精英家教网 > 高中数学 > 题目详情
11.点P在椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上运动,点A、B分别在x2+(y-4)2=16和x2+(y+4)2=4上运动,则PA+PB的最大值16.

分析 由题意得:椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1的两个焦点(0,±4)分别是圆x2+(y-4)2=16和x2+(y+4)2=4的圆心,故P为椭圆的下顶点,A,B分别为相应圆上纵坐标最大的点时,PA+PB取最大值.

解答 解:由题意得:椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1的两个焦点(0,±4)分别是圆x2+(y-4)2=16和x2+(y+4)2=4的圆心,
P到两个焦点的距离和为定值2×5=10,
两圆的半径分别为4和2,
故P为椭圆的下顶点,A,B分别为相应圆上纵坐标最大的点时,
PA+PB的最大值为:2×5+2+4=16,
故答案为:16.

点评 本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(?x+φ)(A>0,?>0,0<φ<$\frac{π}{2}$)的图象如图所示,则(  )
A.f(x)=2sin3xB.$f(x)=2sin(x+\frac{π}{3})$C.$f(x)=2sin(3x+\frac{π}{6})$D.$f(x)=2sin(2x+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=$\left\{{\begin{array}{l}{{x^2}+1}\\{2x}\end{array}}\right.\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,则x的值是-2或$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设两个向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,若向量2t$\overrightarrow{a}$+7$\overrightarrow{b}$与向量$\overrightarrow{a}$+t$\overrightarrow{b}$的夹角为钝角,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x+$\frac{m}{x}$,且f(1)=2.
(Ⅰ)求m的值;
(Ⅱ)判断f(x)的奇偶性;
(Ⅲ)用定义法证明f(x)在区间(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=ax2+2x+1在(-∞,0)上至少有一个零点,则实数a的取值范围为(  )
A.(-∞,0)B.(-∞,1]C.(-∞,0)∪(0,1]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可能为(  )
A.(1)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lg(l+x)-lg(2-x)的定义域为条件p,关于x的不等式x2+mx-2m2-3m-l<0(m>$-\frac{2}{3}$)的解集为条件q.
(1)若p是q的充分不必要条件时,求实数m的取值范围.
(2)若¬p是¬q的充分不必要条件时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=loga|x|在(0,+∞)上单调递减,则f(-2)<f(a+1)(填“<”,“=”,“>”之一).

查看答案和解析>>

同步练习册答案