精英家教网 > 高中数学 > 题目详情

已知函数

1)若函数存在极大值和极小值,求的取值范围;

2)设分别为的极大值和极小值,其中的取值范围.

 

【答案】

1;(2

【解析】

试题分析:1)因为函数,所以要求函数存在极大值和极小值即对函数的求导,要保证导函数的对应的方程有两个不相等的正实根.所以通过判别式大于零和韦达定理中根与系数的关系即可得到结论.

2)根据极大值与极小值的含义得到两个相应的方程,又由两个极值点的关系,将其中一个消去,由两个极值相加可得关于关于极大值点的等式从而通过基本不等式求最值即可.

试题解析:(1其中

由题设知且关于的方程有两个不相等的正数根,

记为满足化简得

经检验满足题设,故为所求.

2)方法一:由题设结合

所以

因为,所以在区间是减函数,

所以

所以在区间上是减函数,

所以

因此

方法二:由题设结合

所以

所以在区间上是增函数,

,设,则时是增函数,

所以当时,,即

所以

因此

方法三:由方法一知

,则

所以在区间上是增函数,而

所以

方法四:前同方法二知

时,关于的方程有两个不相等的正数根

那么解得

下同方法二.

考点:1.利用导数求极值.2.利用基本不等式求极值.3.函数与不等式的关系.4.消元解方程的思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
(1)若函数f(x)和g(x)在区间[lg|a+2|,(a+1)2]上都是减函数,求实数a的取值范围;
(2)在(1)的条件下,比较f(1)与
16
的大小,写出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3(ax+b)图象过点A(2,1)和B(5,2),设an=3f(n),n∈N*
(Ⅰ)求函数f(x)的解析式及数列{an}的通项公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
对一切n∈N*均成立的最大实数a;
(Ⅲ)对每一个k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,记为{bn},设Tn是数列{bn}的前n项和,试问是否存在正整数m,使Tm=2008?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断曲线,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函数f(t)在D上的最小值,max{f(t)|x∈D}表示函数f(t)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx(0≤x≤
n
2
),试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,
n
2
]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果是函数的一个极值,称点是函数的一个极值点.已知函数

(1)若函数总存在有两个极值点,求所满足的关系;

(2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.

(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三12月月考数学理卷 题型:解答题

(本小题满分14分)已知函数 

(1)若函数在区间其中a >0,上存在极值,求实数a的取值范围;

(2)如果当时,不等式恒成立,求实数k的取值范围;

(3)求证.

 

查看答案和解析>>

同步练习册答案