精英家教网 > 高中数学 > 题目详情

【题目】某高中学校在2015年的一次体能测试中,规定所有男生必须依次参加50米跑、立定跳远和一分钟的引体向上三项测试,只有三项测试全部达标才算合格,已知男生甲的50米跑和立定跳远的测试与男生乙的50米跑测试已达标,男生甲还需要参加一分钟的引体向上测试,男生乙还需要参加立定跳远和一分钟引体向上两项测试,若甲参加一分钟引体向上测试达标的概率为p,乙参加立定跳远和一分钟引体向上的测试达标的概率均为 ,甲乙每一项测试是否达标互不影响,已知甲和乙同时合格的概率为
(1)求p的值,并计算甲和乙恰有一人合格的概率;
(2)在三项测试项目中,设甲达标的测试项目项数为x,乙达标的测试项目项数为y,记ξ=x+y,求随机变量ξ的分布列和数学期望.

【答案】
(1)解:设事件A1=“甲引体向上测试达标”,B1=“乙立定跳远测试达标”,

B2=“乙引体向上测试达标”,则P(A1)=p,P(B1)=P(B2)=

∵甲乙每一项测试是否达标互不影响,甲和乙同时合格的概率为

∴p×( 2= ,解得p=

设事件A=“甲测试合格”,B=“乙测试合格”,

则P(A)= ,P(B)=P(B1B2)=( 2=

∴甲和乙恰有一人合格的概率:

p=P(A )+P( B)= + =


(2)解:由已知得随机变量x的取值为2,3,随机变量y的取值为1,2,3,

∴ξ的可能取值为3,4,5,6,

P(ξ=3)= =

P(ξ=4)= =

P(ξ=5)= =

P(ξ=6)= =

∴随机变量ξ的分布列为:

ξ

3

4

5

6

P

∴E(ξ)= =


【解析】(1)设事件A1=“甲引体向上测试达标”,B1=“乙立定跳远测试达标”,B2=“乙引体向上测试达标”,则P(A1)=p,P(B1)=P(B2)= ,由此利用题设条件求出p= ,设事件A=“甲测试合格”,B=“乙测试合格”,则P(A)= ,P(B)=P(B1B2)= ,由此能求出甲和乙恰有一人合格的概率.(2)由已知得随机变量x的取值为2,3,随机变量y的取值为1,2,3,ξ的可能取值为3,4,5,6,分别求出相应的概率,由此能求出随机变量ξ的分布列和E(ξ).
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数f(x)的周期为4,且x∈(0,2)时f(x)=ln(x2﹣x+b),若函数f(x)在区间[﹣2,2]上恰有5个零点,则实数b应满足的条件是(
A.﹣1<b≤1
B.﹣1<b<1或b=
C. <b
D. <b≤1或b=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙,丙三位学生独立地解同一道题,甲做对的概率为 ,乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:

ξ

0

1

2

3

P

a

b


(1)求至少有一位学生做对该题的概率;
(2)求m,n的值;
(3)求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题个数是( )

. 如果共面, 也共面,共面;

.已知直线a的方向向量与平面,若// ,则直线a// ;

③若共面,则存在唯一实数使,反之也成立;

.对空间任意点O与不共线的三点ABC,若=x+y+z

(其中xyz∈R),则PABC四点共面.

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知斜三棱柱ABC﹣A1B1C1中,底面ABC是等边三角形,侧面BB1C1C是菱形,∠B1BC=60°.

(1)求证:BC⊥AB1
(2)若AB=2,AB1= ,求二面角C﹣AB1﹣C1(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ (a>0).
(1)求函数f(x)在[1,+∞)上的最小值;
(2)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.
(i)证明:a∈(0,1),f( )>
(ii)求实数a的取值范围及x1x2x3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P-ABCD中,AD⊥面PABBC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是(  )

A. 圆的一部分 B. 椭圆的一部分

C. 球的一部分 D. 抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:

手机控

非手机控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100


(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望. 参考公式:
参考数据:

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.456[

0.708

1.321

3.840

5.024

6.635

查看答案和解析>>

同步练习册答案