精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C的对边分别为a、b、c,S是该三角形的面积.
(1)若
a
=(sin
B
2
-cos
B
2
,-
1
2
),
b
=(1,sin
B
2
+cos
B
2
),
a
b
,求角B的度数;
(2)若a=8,B=
3
,S=8
3
,求b的值.
分析:(1)根据向量平行的条件,建立关于B的等式,化简得出cosB=
1
2
,从而得到角B的度数.
(2)利用三角形的面积公式,结合题意算出c=4.再由余弦定理加以计算,可得边b的值.
解答:解:(1)角A、B、C的对边分别为a、b、c,
a
b
,可得(sin
B
2
-cos
B
2
)(sin
B
2
+cos
B
2
)=-
1
2

∴sin2
B
2
-cos2
B
2
=-
1
2
,得cosB=-(sin2
B
2
-cos2
B
2
)=
1
2

结合B为三角形的内角,可得B=60°.
(2)由a=8,B=
3
,S=8
3

可得
1
2
acsinB=
1
2
×8×c×sin
3
=8
3
,解得c=4.
根据余弦定理,可得
b=
a2+c2-2accosB
=
64+16-2×8×4×(-
1
2
)
=4
7
点评:本题给出三角形ABC满足的条件,求边和角的大小.着重考查了向量平行的条件、三角恒等变换公式、余弦定理与三角形的面积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案