精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:①已知 ,“ ”是“ ”的充分条件;
②已知平面向量 , 是“ ”的必要不充分条件;
③已知 ,“ ”是“ ”的充分不必要条件;
④命题 ,使 ”的否定为 ,都有 ”.其中正确命题的个数是( )
A.0
B.1
C.2
D.3

【答案】C
【解析】①已知 ,“ ”能够推出“ ”,“ ”不能推出“ ”,本选项正确;
②已知平面向量 , “ ”不能推出“ ”,本选项不正确;
③已知 ,“ ”是“ ”的充分不必要条件,正确;
④命题 ,使 ”的否定为 ,都有 ”本选项不正确.
正确的个数为2.
故答案为:C
(1)当a > 1 且 b > 1 时,可以推出 a b > 1,但是 a b > 1不能推出 a > 1 且 b > 1,可判断是正确的;
(2)结合平面向量的几何性质可知模都大于1,并不能推出向量的和的模大于1,故不正确;
(3)a,b的平方和不小于1,则a,b的绝对值的和也不小于1,正确;
(4)且命题的否定一定是用或连接,特称命题的否定是全称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线 的参数方程为 为参数),直线 的参数方程为 为参数).
(Ⅰ)求曲线 和直线 的普通方程;
(Ⅱ)若点 为曲线 上一点,求点 到直线 的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图表示求算式“2×3×5×9×17×33”之值,则判断框内不能填入(  )

A.k≤33
B.k≤38
C.k≤50
D.k≤65

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点 ,点 在双曲线 上,则使 的面积为3的点 的个数为( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】博鳌亚洲论坛2015年会员大会于3月27日在海南博鳌举办,大会组织者对招募的100名服务志愿者培训后,组织一次 知识竞赛,将所得成绩制成如右频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.

(1)试确定受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为 .
(I)求椭圆C的方程;
(II)设过点B(0,m)(m>0)的直线 与椭圆C相交于E,F两点,点B关于原点的对称点为D,若点D总在以线段EF为直径的圆内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两校高三年级学生某次期末联考地理成绩情况,从这两学校中分别随机抽取30名高三年级的地理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(1)若乙校高三年级每位学生被抽取的概率为0.15,求乙校高三年级学生总人数;

(2)根据茎叶图,分析甲、乙两校高三年级学生在这次联考中哪个学校地理成绩较好?(不要求计算,要求写出理由);

(3)从样本中甲、乙两校高三年级学生地理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数处的切线方程;

(2)令,讨论函数的零点的个数;

(3)若,正实数满足,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,证明: .

查看答案和解析>>

同步练习册答案