【题目】已知曲线 的参数方程为 ( 为参数),直线 的参数方程为 ( 为参数).
(Ⅰ)求曲线 和直线 的普通方程;
(Ⅱ)若点 为曲线 上一点,求点 到直线 的距离的最大值.
科目:高中数学 来源: 题型:
【题目】函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是( )
A.(-1,3)
B.(-1,2)
C.(-1,3]
D.(-1,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区 的年平均浓度不得超过3S微克/立方米, 的24小时平均浓度不得超过75微克/立方米.某市环保局随机抽取了一居民区2016年20天 的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如图表:
组别 | 浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.
(ⅰ)求图中 的值;
(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从 的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区 的24小时平均浓度符合环境空气质量标准的天数为 ,求 的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的最小正周期为 ,将函数 的图象向左平移 个单位长度,再向下平移 个单位长度,得到函数 的图象.
(Ⅰ)求函数 的单调递增区间;
(Ⅱ)在锐角 中,角 的对边分别为 .若 , ,求 面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ( )在同一半周期内的图象过点 , , ,其中 为坐标原点, 为函数 图象的最高点, 为函数 的图象与 轴的正半轴的交点, 为等腰直角三角形.
(1)求 的值;
(2)将 绕原点 按逆时针方向旋转角 ,得到 ,若点 恰好落在曲线 ( )上(如图所示),试判断点 是否也落在曲线 ( )上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形 中,点 在线段 上, , ,沿直线 将 翻折成 ,使点 在平面 上的射影 落在直线 上.
(Ⅰ)求证:直线 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:①已知 ,“ 且 ”是“ ”的充分条件;
②已知平面向量 , 是“ ”的必要不充分条件;
③已知 ,“ ”是“ ”的充分不必要条件;
④命题 “ ,使 且 ”的否定为 “ ,都有 且 ”.其中正确命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com