精英家教网 > 高中数学 > 题目详情
15.已知x+sinxcosx-1=0,2cosy-2y+π+4=0,求sin(2x-y)

分析 由x+sinxcosx-1=0,得$x+\frac{1}{2}sin2x-1=0$,令$2x=y-\frac{π}{2}$,代入方程x+sinxcosx-1=0,整理得到第二个方程,由此说明2x-y=$\frac{π}{2}$,则答案可求.

解答 解:由x+sinxcosx-1=0,得$x+\frac{1}{2}sin2x-1=0$,
令$2x=y-\frac{π}{2}$,代入方程x+sinxcosx-1=0,整理得:
$\frac{y}{2}-\frac{π}{4}+\frac{1}{2}sin(y-\frac{π}{2})-1=0$,即$\frac{y}{2}-\frac{π}{4}-\frac{1}{2}cos2y-1=0$.
整理得:2cosy-2y+π+4=0,即第二个方程.
∴2x-y=-$\frac{π}{2}$,则sin(2x-y)=sin(-$\frac{π}{2}$)=-1.

点评 此类题型,可适当变换x,由第一个方程,得到第二个方程,具有较强的灵活性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在棱柱ABC-A1B1C1中,底面为正三角形,侧棱长等于底面边长,且侧棱与底面所成的角为60°,顶点为B1在底面ABC上的射影O恰好是AB的中点
(1)求证:B1C⊥C1A;
(2)求二面角C1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}为等比数列.
(1)a52=a3•a7是否成立?a52=a1•a9成立吗?为什么?
(2)an2=an-1•an+1(n>1)是否成立?你据此能得到什么结论?
(3)an2=an-k•an+k(n>k>0)是否成立?你又能得到什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设F2(c,0)(c>0)是双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,M是双曲线左支上的一点,线段MF2与圆x2+y2-$\frac{2c}{3}$x+$\frac{{a}^{2}}{9}$=0相切于D,且|MF2|=3|DF2|,则双曲线Γ的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知0<a≤1,0≤b≤1,0≤c≤1,求证:$\frac{1+ab+bc+ca}{a+b+c+abc}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合U={1,2,3,4},A={1},B={2,4},则A∪(∁UB)=(  )
A.{1}B.{3}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={y|y>a+3或y<a},B={2≤y≤4},若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.证明:$\frac{tanθ(1+sinθ)+sinθ}{tanθ(1+sinθ)-sinθ}$=$\frac{tanθ+sinθ}{tanθsinθ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,凸四边形ABCD,求作一个三角形,使得该三角形的面积和凸四边形ABCD的面积相等.

查看答案和解析>>

同步练习册答案