精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
exx-2

(1)求函数f(x)的单调区间;
(2)求函数f(x)图象在与y轴交点处的切线与两坐标轴所围成的图形面积.
分析:(1)对函数f(x)进行求导,根据函数的单调性与其导函数正负之间的关系求单调区间.
(2)先求出与y轴的交点,得到切线方程,最后根据切线方程与两坐标轴的交点坐标得到面积.
解答:解:(1)函数的定义域为{x|x≠2}, f′(x)=
(x-3)ex
(x-2)2

当x>3时,f'(x)>0,
当x<3且x≠2时,f'(x)<0.
故函数f(x)的增区间为(3,+∞),减区间为(-∞,-2),(2,3).
(2)函数f(x)的图象与y轴交点坐标为(0, -
1
2
),?∴f′(0)=
-3
4

故切线方程为y+
1
2
=-
3
4
x

切线与两坐标轴的交点分别为(0, -
1
2
)
(-
2
3
, 0)

∴所求图象的面积S=
1
2
×
1
2
×
2
3
=
1
6
点评:本题主要考查导数的几何意义和函数的单调性与其导函数正负之间的关系.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
e-x-2,(x≤0)
2ax-1,(x>0)
(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在[
1
2
,+∞)
上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-z+log3
1
x
,若实数x0是方程f(x)=0的解,且x1>x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•孝感模拟)已知函数
f(x)=
e-x-1,(x≤0)
|lnx|,(x>0)
,集合M={x|f[f(x)]=1},则M中元素的个数为(  )

查看答案和解析>>

同步练习册答案