分析 由函数图象观察可知A,函数的周期T=2($\frac{2π}{3}-$$\frac{π}{6}$)=π,由周期公式可得ω,由点($\frac{π}{6}$,2)在函数图象上,可得:2sin(2×$\frac{π}{6}$+φ)=2,解得φ=k$π+\frac{π}{6}$,k∈Z结合范围|φ|≤$\frac{π}{2}$,即可求得φ的值.
解答 解:由函数图象观察可知:A=2…(1分),
函数的周期T=2($\frac{2π}{3}-$$\frac{π}{6}$)=π,由周期公式可得:$ω=\frac{2π}{π}=2$…(2分)
由点($\frac{π}{6}$,2)在函数图象上,可得:2sin(2×$\frac{π}{6}$+φ)=2,可得:φ=k$π+\frac{π}{6}$,k∈Z
∵|φ|≤$\frac{π}{2}$,
∴φ=$\frac{π}{6}$…(4分)
故答案为:2,2,$\frac{π}{6}$.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{11}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ABCD是矩形 | B. | ABCD是菱形 | ||
| C. | ABCD是正方形 | D. | ABCD是平行四边形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{15}$ | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$或$\sqrt{5}$ | D. | $\sqrt{15}$或$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com