精英家教网 > 高中数学 > 题目详情

【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率为

【答案】
【解析】解:一共有36种等可能的结果,即∵同时向上掷两枚骰子,向上的点数之和共有以下36种结果: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
两个骰子点数之和不超过5的有10种情况,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)
所以向上的点数之和不超过5的概率为
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x+ sinxcosx.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间[﹣ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差为2,前n项和为Sn , 且S1 , S2 , S4成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(﹣1)n1 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: + =1(a>b>0)的离心率为 ,短轴端点与椭圆的两个焦点所构成的三角形面积为1,过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的方程;
(2)是否存在定点 ,使 恒为定值.若存在求出这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:




其中可作为该平面其他向量基底的是( )
A.①②
B.①③
C.①④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的定义域为{x|﹣2≤x≤3,且x≠2},值域为{y|﹣1≤y≤2,且y≠0},则y=f(x)的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=﹣x+1与椭圆 + =1(a>b>0)相交于A、B两点,且线段AB的中点在直线l:x﹣2y=0上,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(0)=0,f(x)+f(1﹣x)=1,f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )等于(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案