精英家教网 > 高中数学 > 题目详情
6.已知三棱锥P-ABC中,PA=4,AB=AC=2$\sqrt{3}$,BC=6,PA⊥面ABC,则此三棱锥的外接球的表面积为(  )
A.16πB.32πC.64πD.128π

分析 根据已知求出△ABC外接圆的半径,从而求出该三棱锥外接球的半径和三棱锥的外接球表面积.

解答 解:∵底面△ABC中,AB=AC=2$\sqrt{3}$,BC=6,
∴cos∠BAC=$\frac{12+12-36}{2×2\sqrt{3}×2\sqrt{3}}$=-$\frac{1}{2}$
∴sin∠BAC=$\frac{\sqrt{3}}{2}$,
∴△ABC的外接圆半径r=$\frac{1}{2}×\frac{6}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$,
所以三棱锥外接球的半径R2=r2+($\frac{PA}{2}$)2=(2$\sqrt{3}$)2+22=16,
所以三棱锥P-ABC外接球的表面积S=4πR2=64π.
故选:C.

点评 本题考查了三棱锥的外接球体积与计算能力的应用问题,确定三棱锥的外接球半径是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,求证:a2+b2+c2=2(bccosA+cacosB+abcosC).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.近几年骑车锻炼越来越受到人们的喜爱,男女老少踊跃参加,我校课外活动小组利用春节放假时间进行社会实践,对[25,55]年龄段的人群随机抽取n人进行了一次“你是否喜欢骑车锻炼”的问卷,将被调查人员分为“喜欢骑车”和“不喜欢骑车”,得到如下统计表和各年龄段人数频率分布直方图:
组数分组喜欢骑车锻炼的人数占本组的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55]150.3
(1)补全频率分布直方图,并n,a,p的值;
(2)从[40,50)岁年龄段的“喜欢骑车”中采用分层抽样法抽取6人参加骑车锻炼体验活动,求其中选取2名领队来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的通项公式an=$\frac{an}{bn+1}$,且a2=$\frac{6}{5}$,a3=$\frac{9}{7}$.
(1)求an
(2)求证:an<an+1
(3)求证:an∈[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的通项公式是an=n($\frac{4}{5}$)n
(1)判断数列{an}的单调性;
(2)是否存在最小正整数k,使得an<k对任意的n∈N*都成立,若存在,求出k的值,若不在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2-$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,直线y=ax+2与曲线y=f(x)交于A、B两点,其中A是切点,记h(x)=$\frac{f(x)}{x}$,g(x)=ax-f(x),则(  )
A.g(x)的极小值点小于极大值点,且极小值为-2
B.g(x)的极小值点大于极大值点,且极大值为2
C.h(x)只有一个极值点
D.h(x)有两个极值点,且极小值点小于极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知tanα=$\frac{1}{3}$,计算:$\frac{1}{{2sinαcosα+{{cos}^2}α}}$.
(2)已知平行四边形ABCD的对角线AC和BD相交于O,且$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$用向量$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{OC}$,$\overrightarrow{OD}$,$\overrightarrow{DC}$,$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若A∪B=A,求实数m的取值范围;
(2)当x∈Z时,求A的非空真子集的个数;
(3)当x∈R时,若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

同步练习册答案