分析 设|PF2|=t,则|PF1|=3t,利用双曲线的定义,可得t=a,利用余弦定理可得cos∠F1PF2,再利用数量积公式,即可求出双曲线C的离心率为.
解答 解:设|PF2|=t,则|PF1|=3t,∴3t-t=2a,
∴t=a,
由余弦定理可得cos∠F1PF2=$\frac{9{a}^{2}+{a}^{2}-4{c}^{2}}{2×3a×a}$=$\frac{5{a}^{2}-2{c}^{2}}{3{a}^{2}}$,
∵$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=-a2,
∴3a•a•$\frac{5{a}^{2}-2{c}^{2}}{3{a}^{2}}$=-a2,
∴c=$\sqrt{3}$a,
∴e=$\frac{c}{a}$$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题主要考查了双曲线的简单性质,考查了双曲线的定义、余弦定理的运用,考查向量的数量积公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [2,e] | B. | [$\frac{1}{e}$,+∞) | C. | [$\frac{1}{e}$,e] | D. | [$\frac{1}{e}$,$\frac{2+ln3}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 数学 | 89 | 91 | 93 | 95 | 97 |
| 物理 | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 不能确定 | B. | 无解 | C. | 有一解 | D. | 有两解 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com