精英家教网 > 高中数学 > 题目详情
11.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(-ax+lnx+1)+f(ax-lnx-1)≥2f(1)对x∈[1,3]恒成立,则实数a的取值范围是(  )
A.[2,e]B.[$\frac{1}{e}$,+∞)C.[$\frac{1}{e}$,e]D.[$\frac{1}{e}$,$\frac{2+ln3}{3}$]

分析 由条件利用函数的奇偶性和单调性,可得0≤ax-lnx≤2对x∈[1,3]恒成立.令g(x)=ax-lnx,则由 g′(x)=a-$\frac{1}{x}$=0,求得x=$\frac{1}{a}$.
分类讨论求得g(x)的最大值和最小值,从而求得a的范围.

解答 解:∵定义在R上的偶函数f(x)在[0,+∞)上递减,∴f(x)在(-∞,0)上单调递增,
若不等式f(-ax+lnx+1)+f(ax-lnx-1)≥2f(1)对x∈[1,3]恒成立,
则2f(ax-lnx-1)≥2f(1)对x∈[1,3]恒成立,即f(ax-lnx-1)≥f(1)对x∈[1,3]恒成立.
∴-1≤ax-lnx-1≤1 对x∈[1,3]恒成立,
即0≤ax-lnx≤2对x∈[1,3]恒成立.
令g(x)=ax-lnx,则由 g′(x)=a-$\frac{1}{x}$=0,求得x=$\frac{1}{a}$.
①当$\frac{1}{a}$≤1,即 a<0 或a≥1时,g′(x)≥0在[1,3]上恒成立,g(x)为增函数,
∵最小值g(1)=a≥0,最大值g(3)=3a-ln3≤2,∴0≤a≤$\frac{2+ln3}{3}$,
综合可得,1≤a≤$\frac{2+ln3}{3}$.
②当$\frac{1}{a}$≥3,即0<a≤$\frac{1}{3}$时,g′(x)≤0在[1,3]上恒成立,g(x)为减函数,
∵最大值 g(1)=a≤2,最小值g(3)=3a-ln3≥0,∴$\frac{ln3}{3}$≤a≤2,
综合可得,a无解.
③当1<$\frac{1}{a}$<3,即 $\frac{1}{3}$<a<1时,在[1,$\frac{1}{a}$)上,g′(x)<0恒成立,g(x)为减函数;
在($\frac{1}{a}$,3]上,g′(x)>0恒成立,g(x)为增函数.
故函数的最小值为g($\frac{1}{a}$)=1-ln$\frac{1}{a}$,∵g(1)=a,g(3)=3a-ln3,g(3)-g(1)=2a-ln3.
若 2a-ln3>0,即ln$\sqrt{3}$<a<1,∵g(3)-g(1)>0,则最大值为g(3)=3a-ln3,
此时,由1-ln$\frac{1}{a}$≥0,g(3)=3a-ln3≤2,求得 $\frac{1}{e}$≤a≤$\frac{2+ln3}{3}$,综合可得,ln$\sqrt{3}$<a<1.
若2a-ln3≤0,即$\frac{1}{3}$<a≤$\frac{1}{2}$ln3=ln$\sqrt{3}$,∵g(3)-g(1)≤0,则最大值为g(1)=a,
此时,最小值1-ln$\frac{1}{a}$≥0,最大值g(1)=a≤2,求得$\frac{1}{e}$≤a≤2,
综合可得$\frac{1}{e}$≤a≤ln$\sqrt{3}$.
综合①②③可得,1≤a≤$\frac{2+ln3}{3}$ 或ln$\sqrt{3}$<a<1或 $\frac{1}{e}$≤a≤ln$\sqrt{3}$,
即 $\frac{1}{e}$≤a≤$\frac{2+ln3}{3}$,
故选:D.

点评 本题主要考查函数的奇偶性和单调性的综合应用,函数的恒成立问题,体现了转化、分类讨论的数学思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆$E:\frac{x^2}{2}+{y^2}=1$的右焦点为F,过F作互相垂直的两条直线分别与E相交于A,C和B,D四点.
(1)四边形ABCD能否成为平行四边形,请说明理由;
(2)求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.角α的始边在x轴非负半轴,终边过点P(1,$\sqrt{3}$),则sinα的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,将曲线C1:x2+y2=1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后,得到曲线C2;在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程是ρ(2cosθ-sinθ)=6.
(Ⅰ)写出曲线C2的参数方程和直线l的直角坐标方程;
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离d最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为(  )
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.质检部门从某超市销售的甲、乙两种食用油中分划随机抽取100桶检测某项质量指标,由检测结果得到如图的频率分布直方图:
(I)写出频率分布直方图(甲)中a的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为s12,s22,试比较s12,s22的大小(只要求写出答案);
(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一个桶的质量指标大于20,且另一个不大于20的概率;
(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值Z服从正态分布N(μ,δ2).其中μ近似为样本平均数$\overline{x}$,δ2近似为样本方差s22,设X表示从乙种食用油中随机抽取lO桶,其质量指标值位于(14.55,38.45)的桶数,求X的散学期望.
注:①同一组数据用该区问的中点值作代表,计算得s2=$\sqrt{142.75}$≈11.95;
②若Z-N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线C:y=ex-ax+1存在与直线3x+y=0平行的切线,则函数f(x)=x2-ax+2有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若在双曲线C的右支上存在一点P满足|PF1|=3|PF2|,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=-a2,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l经过点(0,-1),且通过第二、三、四象限,并与坐标轴围成的三角形面积为2,则直线l的方程为(  )
A.x+y+4=0B.x+4y+4=0C.4x+y+16=0D.x+y-4=0

查看答案和解析>>

同步练习册答案