分析 (Ⅰ)求出曲线C2的普通方程,写出它的参数方程,曲线C2的参数方程,利用极坐标与直角坐标方程的互化,即可求出直线l的直角坐标方程;
(Ⅱ)设出点P坐标,得到直线l的距离d的表达式,然后求解最大值,并求出此最大值.
解答 解:(Ⅰ)由题意知,曲线C1:x2+y2=1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后,得到曲线C2方程为${(\frac{x}{{\sqrt{3}}})^2}+{(\frac{y}{2})^2}=1$,参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosφ\\ y=2sinφ\end{array}\right.$(φ为参数).直线l的极坐标方程是ρ(2cosθ-sinθ)=6.可得2ρcosθ-ρsinθ=6.
∴直线l的直角坐标方程为2x-y-6=0.…(6分)
(Ⅱ)设$P(\sqrt{3}cosφ,2sinφ)$,则点P到直线l的距离为$d=\frac{{|2\sqrt{3}cosφ-2sinφ-6|}}{{\sqrt{5}}}=\frac{{|4sin({{60}°}-φ)-6|}}{{\sqrt{5}}}$,
多以当sin(60°-φ)=-1时,d取最大值$2\sqrt{5}$,此时取φ=150°,点P坐标是$(-\frac{3}{2},1)$.…(10分)
点评 本题考查曲线的极坐标与直角坐标方程的互化,考查椭圆的参数方程以及普通方程的互化,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,e] | B. | [$\frac{1}{e}$,+∞) | C. | [$\frac{1}{e}$,e] | D. | [$\frac{1}{e}$,$\frac{2+ln3}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 数学 | 89 | 91 | 93 | 95 | 97 |
| 物理 | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com