分析 (1)由条件利用正弦定理求得a的值.
(2)设BC的中点为D,根据△OBC的面积为 $\frac{1}{2}$•BC•OD=$\frac{\sqrt{3}}{3}$,求得OD的值,可得∠A=60°,再利用余弦定理求得b=c=2,从而判断△ABC为等边三角形.
解答 解:(1)△ABC的中,∵acsinA+4sinC=4csinA,∴a2c+4c=4ac,∴a=2.
(2)∵圆O为△ABC的外接圆(O在△ABC内部),设BC的中点为D,
∵△OBC的面积为 $\frac{1}{2}$•BC•OD=$\frac{1}{2}$•a•OD=$\frac{1}{2}$•2•OD=$\frac{\sqrt{3}}{3}$,∴OD=$\frac{\sqrt{3}}{3}$,
即△ABC的外接圆的半径r=$\frac{\sqrt{3}}{3}$,∴∠BOC=120°,∴∠A=60°.
∵b+c=4,由余弦定理可得cosA=$\frac{1}{2}$=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{{(b+c)}^{2}-2bc-4}{2bc}$=$\frac{16-2bc-4}{2bc}$,
求得bc=4,故b=c=2,故此时,△ABC为等边三角形.
点评 本题主要考查正弦定理、余弦定理的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p∨q | B. | ¬p∧¬q | C. | p∧¬q | D. | p∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com