精英家教网 > 高中数学 > 题目详情
14.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD是等边三角形,AD=DE=2AB=2,F,G分别为AD,DC的中点.
(1)求证:CF⊥平面ABED;
(2)求四棱锥C-ABED的体积;
(3)判断直线AG与平面BCE的位置关系,并加以证明.

分析 (1)由AB⊥平面ACD得出平面ACD⊥平面ABED,由等边三角形得出CF⊥AD,利用面面垂直的性质得出CF⊥平面ABED;
(2)棱锥的底面ABED为直角梯形,高为CF,代入体积公式计算即可;'
(3)取CE的中点H,连结GH,BH,则可证明四边形ABHG是平行四边形,于是AG∥BH,得出AG∥平面BCE.

解答 证明:(1)∵F为等腰△ACD的边AD的中点
∴CF⊥AD,
∵AB⊥平面ACD,AB?平面ABED,
∴平面ACD⊥平面ABED
∵平面ACD∩平面ABED=AD,CF⊥AD,.CF?平面ACD,
∴CF⊥平面ABED.
(2)∵△ACD是边长为2的等边三角形,∴CF=$\sqrt{3}$.
∵S梯形ABED=$\frac{1}{2}×(1+2)×2$=3,
∴${V_{C-ABEF}}=\frac{1}{3}{S_{ABEF}}•CF=\sqrt{3}$.
(3)结论:直线AG∥平面BCE.
证明:取CE的中点H,连结GH,BH,
∵G是CD的中点,
∴GH∥DE,且 GH=$\frac{1}{2}DE$=1,
∵AB⊥平面ACD,DE⊥平面ACD,
∴GH∥AB,又GH=AB=1,
∴四边形ABHG为平行四边形,
∴AG∥BH,又AG?平面BCE,BH?平面BCE,
∴AG∥平面BCE.

点评 本题考查了线面垂直,线面平行的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知正项数列{an},其前n项的和为Sn,且满足4Sn=an2+2an+1,
(1)求数列{an}的通项公式与数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n项的和.
(2)设数列{bn}满足bn=3n•an,试求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从1,2,3,4,5中随机取出两个不同的数,则其和为奇数的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且过点(1,$\frac{\sqrt{6}}{3}$).
(1)求椭圆C的方程;
(2)设与圆O:x2+y2=$\frac{3}{4}$相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y2=2px(p>0)上一点M(t,8)到焦点F的距离是$\frac{5}{4}t$.
(1)求抛物线C的方程;
(2)过F的直线与抛物线C交于A,B两点,是否存在一个定圆与以AB为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2作垂直于长轴的直线交椭圆于A、B两点,且|AB|=3.
(1)求椭圆的方程;
(2)过F1点作相互垂直的直线l1,l2,其中l1交椭圆于P1,P2,l2交椭圆于P3,P4,求证$\frac{1}{|P{{\;}_{1}P}_{2}|}$+$\frac{1}{|{P}_{3}{P}_{4}|}$是否为定值?并求当四边形P1P2P3P4面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{{x}^{2}}{2}$+y2=1,过点P(-2,0)的直线l交E于A,B两点,且$\overrightarrow{PB}=λ\overrightarrow{PA}$(λ>1).点C与点B关于x轴对称.
(1)求证:直线AC过定点Q,并求该定点;
(2)在(1)的条形下,求△QAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点P是边长为2的正三角形ABC的重心,则$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值为(  )
A.0B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b,c分别是△ABC的中角A,B,C的对边,acsinA+4sinC=4csinA.
(1)求a的值;
(2)圆O为△ABC的外接圆(O在△ABC内部),△OBC的面积为$\frac{\sqrt{3}}{3}$,b+c=4,判断△ABC的形状,并说明理由.

查看答案和解析>>

同步练习册答案