精英家教网 > 高中数学 > 题目详情
17.已知正项数列{an},其前n项的和为Sn,且满足4Sn=an2+2an+1,
(1)求数列{an}的通项公式与数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n项的和.
(2)设数列{bn}满足bn=3n•an,试求数列{bn}的前n项的和Tn

分析 (1)利用递推公式、等差数列的通项公式可得an,再利用“裂项求和”方法即可得出.
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)当n=1时,$4{a_1}=a_1^2+2{a_1}+1$,∴$a_1^2-2{a_1}+1=0,{a_1}=1$,
当n≥2时,$4{S_{n-1}}=a_{n-1}^2+2{a_{n-1}}+1$与$4{S_n}=a_n^2+2{a_n}+1$,两式相减可得$4{a_n}=a_n^2-a_{n-1}^2+2{a_n}-2{a_{n-1}}$,
∴$a_n^2-a_{n-1}^2-2{a_n}-2{a_{n-1}}=0$,化为(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,即数列{an}为等差数列,
∴an=a1+(n-1)•d=1+(n-1)×2=2n-1.
∴$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
设数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项的和为${M_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$,
数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项的和为$\frac{n}{2n+1}$.
(2)${b_n}={3^n}•{a_n}=(2n-1)•{3^n}$,${T_n}=1×3+3×{3^2}+5×{3^3}+…+(2n-1)•{3^n}$
上式同乘以3可得,$3{T_n}=1×{3^2}+3×{3^3}+5×{3^4}+…+(2n-1)•{3^{n+1}}$
两式相减可得$-2{T_n}=3+2[{3^2}+{3^3}+…+{3^n}]-(2n-1)•{3^{n+1}}$
可得${T_n}=(n-1)•{3^{n+1}}+3$.

点评 本题考查了递推关系、“裂项求和”方法、“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知△ABC的三个内角A,B,C所对的边长分别为a,b,c,G为三角形的重心,且满足$\sqrt{3}$(a$\overrightarrow{GA}$+b$\overrightarrow{GB}$)+c$\overrightarrow{GC}$=$\overrightarrow{0}$,则角C=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,若输入的t∈[-3,2],则输出的S属于(  )
A.[-3,9)B.[-3,9]C.[3,5]D.(3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={y|y=2x-1},集合B={x|y=$\sqrt{{x^2}-4x+3}}$},全集U=R,则(∁RA)∩B为(  )
A.(-∞,1]∪[3,+∞)B.[1,3]C.(3,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知变量x,y满足$\left\{{\begin{array}{l}{x-y+1≥0}\\{2x-y-2≤0}\\{y+1≥0}\end{array}}\right.$,若目标函数z=(1+a2)x+y的最大值为10,则实数a的值为(  )
A.±2B.±1C.±$\sqrt{3}$D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数y=sin2x的图象向右平移$\frac{π}{4}$个单位,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象对应的函数解析式是(  )
A.y=-cos4xB.y=-cosxC.y=sin(x+$\frac{π}{4}$)D.y=-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)设PD=AD=1,若M是PB的中点,求棱锥M-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数f(x)=sinxcosx+$\sqrt{3}$cos2x的图象向左平移φ(φ>0)个单位,得到一个偶函数,则φ的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD是等边三角形,AD=DE=2AB=2,F,G分别为AD,DC的中点.
(1)求证:CF⊥平面ABED;
(2)求四棱锥C-ABED的体积;
(3)判断直线AG与平面BCE的位置关系,并加以证明.

查看答案和解析>>

同步练习册答案