2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬ÇÒ¹ýµã£¨1£¬$\frac{\sqrt{6}}{3}$£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÓëÔ²O£ºx2+y2=$\frac{3}{4}$ÏàÇеÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ£¬¼°È¡µÃ×î´óֵʱֱÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛ¢Ùµ±k²»´æÔÚʱ£¬¢Úµ±k´æÔÚʱ£¬ÉèÖ±ÏßΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½«Ö±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°Ö±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬½áºÏ»ù±¾²»µÈʽ¼´¿ÉµÃµ½ËùÇóÃæ»ýµÄ×î´óÖµºÍÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬a2-b2=c2£¬
µã£¨1£¬$\frac{\sqrt{6}}{3}$£©´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ$\frac{1}{{a}^{2}}$+$\frac{2}{3{b}^{2}}$=1£¬
½âµÃa=$\sqrt{3}$£¬b=1£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{3}$+y2=1£»
£¨2£©¢Ùµ±k²»´æÔÚʱ£¬x=¡À$\frac{\sqrt{3}}{2}$ʱ£¬¿ÉµÃy=¡À$\frac{\sqrt{3}}{2}$£¬
S¡÷OAB=$\frac{1}{2}$¡Á$\sqrt{3}$¡Á$\frac{\sqrt{3}}{2}$=$\frac{3}{4}$£»
¢Úµ±k´æÔÚʱ£¬ÉèÖ±ÏßΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½«Ö±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨1+3k2£©x2+6kmx+3m2-3=0£¬
x1+x2=-$\frac{6km}{1+3{k}^{2}}$£¬x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$£¬
ÓÉÖ±ÏßlÓëÔ²O£ºx2+y2=$\frac{3}{4}$ÏàÇУ¬¿ÉµÃ$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\frac{\sqrt{3}}{2}$£¬
¼´ÓÐ4m2=3£¨1+k2£©£¬
|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨\frac{-6km}{1+3{k}^{2}}£©^{2}-\frac{12£¨{m}^{2}-1£©}{1+3{k}^{2}}}$
=$\sqrt{3}$•$\sqrt{\frac{1+10{k}^{2}+9{k}^{4}}{1+6{k}^{2}+9{k}^{4}}}$=$\sqrt{3}$•$\sqrt{1+\frac{4{k}^{2}}{1+6{k}^{2}+9{k}^{4}}}$
=$\sqrt{3}$•$\sqrt{1+\frac{4}{9{k}^{2}+\frac{1}{{k}^{2}}+6}}$¡Ü$\sqrt{3}$•$\sqrt{1+\frac{4}{2\sqrt{9}+6}}$=2£¬
µ±ÇÒ½öµ±9k2=$\frac{1}{{k}^{2}}$ ¼´k=¡À$\frac{\sqrt{3}}{3}$ʱµÈºÅ³ÉÁ¢£¬
¿ÉµÃS¡÷OAB=$\frac{1}{2}$|AB|•r¡Ü$\frac{1}{2}$¡Á2¡Á$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$£¬
¼´ÓС÷OABÃæ»ýµÄ×î´óֵΪ$\frac{\sqrt{3}}{2}$£¬´ËʱֱÏß·½³Ìy=¡À$\frac{\sqrt{3}}{3}$x¡À1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµ£¬×¢ÒâÔËÓ÷ÖÀàÌÖÂÛµÄ˼Ïë·½·¨£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°Ö±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬ºÍ»ù±¾²»µÈʽµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¼¯ºÏA={y|y=2x-1}£¬¼¯ºÏB={x|y=$\sqrt{{x^2}-4x+3}}$}£¬È«¼¯U=R£¬Ôò£¨∁RA£©¡ÉBΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1]¡È[3£¬+¡Þ£©B£®[1£¬3]C£®£¨3£¬+¡Þ£©D£®£¨-¡Þ£¬-1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®°Ñº¯Êýf£¨x£©=sinxcosx+$\sqrt{3}$cos2xµÄͼÏóÏò×óÆ½ÒÆ¦Õ£¨¦Õ£¾0£©¸öµ¥Î»£¬µÃµ½Ò»¸öżº¯Êý£¬Ôò¦ÕµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{3}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{6}$D£®$\frac{¦Ð}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª$\overrightarrow m$=£¨cos¦Á£¬sin¦Á£©£¬$\overrightarrow n$=£¨$\sqrt{3}$£¬-1£©£¬¦Á¡Ê£¨0£¬¦Ð£©£®
£¨1£©Èô$\overrightarrow m$¡Í$\overrightarrow n$£¬Çó½Ç¦ÁµÄÖµ£»
£¨2£©Çó|$\overrightarrow m$+$\overrightarrow n$|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®É躯Êýf£¨x£©=ln£¨x+$\sqrt{{x}^{2}+1}$£©+3£¬Èôf£¨a£©=10£¬Ôòf£¨-a£©=£¨¡¡¡¡£©
A£®13B£®-7C£®7D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼËùʾ£¬ÔÚÈýÀâ×¶P-ABQÖУ¬PB¡ÍÆ½ÃæABQ£¬BA=BP=BQ£¬D£¬C£¬E£¬F·Ö±ðÊÇAQ£¬BQ£¬AP£¬BPµÄÖе㣬AQ=2BD£¬PDÓëEQ½»ÓÚµãG£¬PCÓëFQ½»ÓÚµãH£¬Á¬½ÓGH£®
£¨¢ñ£©ÇóÖ¤£ºAB¡ÎGH£»
£¨¢ò£©ÇóÒìÃæÖ±ÏßDPÓëBQËù³ÉµÄ½Ç£»
£¨¢ó£©ÇóÖ±ÏßAQÓëÆ½ÃæPDCËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÒÑÖªAB¡ÍÆ½ÃæACD£¬DE¡ÍÆ½ÃæACD£¬¡÷ACDÊǵȱßÈý½ÇÐΣ¬AD=DE=2AB=2£¬F£¬G·Ö±ðΪAD£¬DCµÄÖе㣮
£¨1£©ÇóÖ¤£ºCF¡ÍÆ½ÃæABED£»
£¨2£©ÇóËÄÀâ×¶C-ABEDµÄÌå»ý£»
£¨3£©ÅжÏÖ±ÏßAGÓëÆ½ÃæBCEµÄλÖùØÏµ£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èç±íÌṩÁËij³§½ÚÄܽµºÄ¼¼Êõ¸ÄÔìºóÉú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö±ê׼ú£©µÄ¼¸×é¶ÔÕÕÊý¾Ý
ºÄ¼¼Êõ¸ÄÔìºóÉú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö±ê׼ú£©µÄ¼¸×é¶ÔÕÕÊý¾Ý£º
x3456
y2.5344.5
£¨1£©Çë»­³öÉϱíÊý¾ÝµÄÉ¢µãͼ£»
£¨2£©Çë¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ìy=bx+a£»ÊÔ¸ù¾Ý£¨2£©Çó³öµÄÏßÐԻع鷽³Ì£¬Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼¸Äǰ½µµÍ¶àÉÙ¶Ö±ê׼ú£¿
£¨²Î¿¼ÊýÖµ3¡Á2.5+4¡Á3+5¡Á4+6¡Á4.5=66.5£©
£¨¸½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£¬ÆäÖÐ$\overline{x}$£¬$\overline{y}$ΪÑù±¾¾ùÖµ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÃüÌâp£ºÃüÌâ¡°¶Ô½ÇÏß»¥Ïà´¹Ö±µÄËıßÐÎÊÇÁâÐΡ±µÄ·ñÃüÌâÊÇÕæÃüÌ⣻ÃüÌâq£º¡°5£¼k£¼9¡±ÊÇ·½³Ì$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-5}$=1±íʾÍÖÔ²µÄ³äÒªÌõ¼þ£®ÔòÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®©Vp¡ÅqB£®©Vp¡Ä©VqC£®p¡Ä©VqD£®p¡Äq

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸