·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛ¢Ùµ±k²»´æÔÚʱ£¬¢Úµ±k´æÔÚʱ£¬ÉèÖ±ÏßΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½«Ö±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°Ö±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬½áºÏ»ù±¾²»µÈʽ¼´¿ÉµÃµ½ËùÇóÃæ»ýµÄ×î´óÖµºÍÖ±ÏßlµÄ·½³Ì£®
½â´ð
½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬a2-b2=c2£¬
µã£¨1£¬$\frac{\sqrt{6}}{3}$£©´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ$\frac{1}{{a}^{2}}$+$\frac{2}{3{b}^{2}}$=1£¬
½âµÃa=$\sqrt{3}$£¬b=1£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{3}$+y2=1£»
£¨2£©¢Ùµ±k²»´æÔÚʱ£¬x=¡À$\frac{\sqrt{3}}{2}$ʱ£¬¿ÉµÃy=¡À$\frac{\sqrt{3}}{2}$£¬
S¡÷OAB=$\frac{1}{2}$¡Á$\sqrt{3}$¡Á$\frac{\sqrt{3}}{2}$=$\frac{3}{4}$£»
¢Úµ±k´æÔÚʱ£¬ÉèÖ±ÏßΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½«Ö±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨1+3k2£©x2+6kmx+3m2-3=0£¬
x1+x2=-$\frac{6km}{1+3{k}^{2}}$£¬x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$£¬
ÓÉÖ±ÏßlÓëÔ²O£ºx2+y2=$\frac{3}{4}$ÏàÇУ¬¿ÉµÃ$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\frac{\sqrt{3}}{2}$£¬
¼´ÓÐ4m2=3£¨1+k2£©£¬
|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨\frac{-6km}{1+3{k}^{2}}£©^{2}-\frac{12£¨{m}^{2}-1£©}{1+3{k}^{2}}}$
=$\sqrt{3}$•$\sqrt{\frac{1+10{k}^{2}+9{k}^{4}}{1+6{k}^{2}+9{k}^{4}}}$=$\sqrt{3}$•$\sqrt{1+\frac{4{k}^{2}}{1+6{k}^{2}+9{k}^{4}}}$
=$\sqrt{3}$•$\sqrt{1+\frac{4}{9{k}^{2}+\frac{1}{{k}^{2}}+6}}$¡Ü$\sqrt{3}$•$\sqrt{1+\frac{4}{2\sqrt{9}+6}}$=2£¬
µ±ÇÒ½öµ±9k2=$\frac{1}{{k}^{2}}$ ¼´k=¡À$\frac{\sqrt{3}}{3}$ʱµÈºÅ³ÉÁ¢£¬
¿ÉµÃS¡÷OAB=$\frac{1}{2}$|AB|•r¡Ü$\frac{1}{2}$¡Á2¡Á$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$£¬
¼´ÓС÷OABÃæ»ýµÄ×î´óֵΪ$\frac{\sqrt{3}}{2}$£¬´ËʱֱÏß·½³Ìy=¡À$\frac{\sqrt{3}}{3}$x¡À1£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµ£¬×¢ÒâÔËÓ÷ÖÀàÌÖÂÛµÄ˼Ïë·½·¨£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°Ö±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬ºÍ»ù±¾²»µÈʽµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬1]¡È[3£¬+¡Þ£© | B£® | [1£¬3] | C£® | £¨3£¬+¡Þ£© | D£® | £¨-¡Þ£¬-1] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{3}$ | B£® | $\frac{¦Ð}{4}$ | C£® | $\frac{¦Ð}{6}$ | D£® | $\frac{¦Ð}{12}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 13 | B£® | -7 | C£® | 7 | D£® | -4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ©Vp¡Åq | B£® | ©Vp¡Ä©Vq | C£® | p¡Ä©Vq | D£® | p¡Äq |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com