精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=(x+a)lnx,已知曲线y=f(x)在点(1,f(1))处的切线与直线2x+y-3=0平行,则a的值为(  )
A.3B.-3C.2D.-2

分析 先求出函数的导数,根据切线的斜率是-2,求出a的值即可.

解答 解:∵f(x)=(x+a)lnx,
∴f′(x)=lnx+$\frac{x+a}{x}$,
∵曲线y=f(x)在点(1,f(1))处的切线与直线2x+y-3=0平行,
∴f′(1)=1+a=-2,
∴a=-3.
故选:B.

点评 本题主要考查导数的几何意义的应用以及直线平行的关系,根据导数求出函数的切线斜率是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>c)的左、右焦点,A是椭圆上位于第一象限内的一点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{O{F}_{2}}$=|$\overrightarrow{O{F}_{2}}$|2,若椭圆的离心率等于$\frac{\sqrt{2}}{2}$,则直线OA的方程是(  )
A.y=$\frac{1}{2}x$B.y=$\frac{\sqrt{2}}{2}$xC.y=$\frac{\sqrt{3}}{2}$xD.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(-1,1)、B(1,5),则过A,B两点的直线斜率等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.角α的始边在x轴非负半轴,终边过点P(1,$\sqrt{3}$),则sinα的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若扇形的弧长是4,圆心角是2弧度,则扇形的半径是2,扇形的面积是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,将曲线C1:x2+y2=1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后,得到曲线C2;在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程是ρ(2cosθ-sinθ)=6.
(Ⅰ)写出曲线C2的参数方程和直线l的直角坐标方程;
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离d最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为(  )
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线C:y=ex-ax+1存在与直线3x+y=0平行的切线,则函数f(x)=x2-ax+2有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等差数列{an}的前n项和为Sn,且a2=2,S5=15,数列{bn}的前n项和为Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(1)求数列{an}的通项公式an及前n项和Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn

查看答案和解析>>

同步练习册答案