精英家教网 > 高中数学 > 题目详情
4.设等差数列{an}的前n项和为Sn,且a2=2,S5=15,数列{bn}的前n项和为Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(1)求数列{an}的通项公式an及前n项和Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出.
(2)利用“累乘求积”、“错位相减法”、等比数列的通项公式及其前n项和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a2=2,S5=15,
∴$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{5{a}_{1}+\frac{5×4}{2}d=15}\end{array}\right.$,解得a1=d=1.
∴an=1+(n-1)=n.
∴Sn=$\frac{n(1+n)}{2}$.
(2)∵b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*),
∴$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{n+1}{2n}$,
∴bn=$\frac{{b}_{n}}{{b}_{n-1}}$$•\frac{{b}_{n-1}}{{b}_{n-2}}$•…$•\frac{{b}_{2}}{{b}_{1}}$•b1
=$\frac{n}{2(n-1)}$$•\frac{n-1}{2(n-2)}$•…•$\frac{2}{2×1}$×$\frac{1}{2}$
=$\frac{n}{{2}^{n}}$.
∴前n项和为Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$=…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{2+n}{{2}^{n+1}}$,
∴Tn=2-$\frac{2+n}{{2}^{n}}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”、“累乘求积”、“递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=(x+a)lnx,已知曲线y=f(x)在点(1,f(1))处的切线与直线2x+y-3=0平行,则a的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知AD是△ABC的中线,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC\;}$(λ,μ∈R),∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,则|${\overrightarrow{AD}}$|的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,若a+c=4,则AC边上中线长的最小值$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则△ABN的周长为40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n项和为Sn,a1=$\frac{3}{2}$,S3=$\frac{21}{2}$.
(1)求数列{an}的通项an与前n项和Sn
(2)设bn=an-$\frac{1}{2}$(n∈N*),{bn}中的部分项b${\;}_{{k}_{1}}$,b${\;}_{{k}_{2}}$,…b${\;}_{{k}_{n}}$恰好组成等比数列,且k1=1,k4=14,求数列{kn}的通项公式;
(3)设cn=$\frac{{S}_{n}}{n}$(n∈N*),求证:数列{cn}中任意相邻的三项都不可能成为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.实数m为何值时,关于x的方程x2-(m-1)x-2=0有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列变量中,不是离散型随机变量的是(  )
A.从2000张已经编好号的卡片(从1到2000号)中任取一张,被取出的号数ξ
B.从2000张已经编好号的卡片(从1到2000号)中任取两张,被取出的号数之和ξ
C.连续掷一枚均匀的硬币4次,反面朝上的次数ξ
D.某工厂加工的某种钢管,内径与规定的内径尺寸之差ξ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在公差为正数的等差数列{an}中,a1和a7为方程x2-10x+16=0的两根,则a2+a4+a6=15.

查看答案和解析>>

同步练习册答案