精英家教网 > 高中数学 > 题目详情
15.已知AD是△ABC的中线,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC\;}$(λ,μ∈R),∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,则|${\overrightarrow{AD}}$|的最小值是1.

分析 运用向量的数量积的定义和中点的向量表示形式,及向量的平方即为模的平方,结合重要不等式即可得到最小值.

解答 解:设AC=b,AB=c,
又∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,
则bccos120°=-2,即有bc=4,
由AD是△ABC的中线,则有$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
即有|${\overrightarrow{AD}}$|2=$\frac{1}{4}$(${\overrightarrow{AB}}^{2}$+${\overrightarrow{AC}}^{2}$+2$\overrightarrow{AB}•\overrightarrow{AC}$)
=$\frac{1}{4}$(b2+c2-4)≥$\frac{1}{4}$(2bc-4)=$\frac{1}{4}$×(8-4)=1.
当且仅当b=c时|${\overrightarrow{AD}}$|的最小值是为1,
故答案为:1.

点评 本题考查向量的数量积的定义和性质,主要考查向量的中点表示形式及向量的平方即为模的平方,运用重要不等式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知点A(-1,1)、B(1,5),则过A,B两点的直线斜率等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为(  )
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线C:y=ex-ax+1存在与直线3x+y=0平行的切线,则函数f(x)=x2-ax+2有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元)1245
销售额y(万元)6142832
根据上表中的数据可以求得线性回归方程$\widehaty$=$\widehatb$x+$\widehata$中的$\widehatb$为6.6,据此模型预报广告费用为10万元时销售额为(  )
A.66.2万元B.66.4万元C.66.8万元D.67.6万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若在双曲线C的右支上存在一点P满足|PF1|=3|PF2|,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=-a2,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等差数列{an}的前n项和为Sn,且a2=2,S5=15,数列{bn}的前n项和为Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(1)求数列{an}的通项公式an及前n项和Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(2-a)lnx+$\frac{1}{x}+2ax$.
(1)若函数f(x)是单调函数求实数a的值;
(2)当a=1时,g(x)=f(x-1)-2x-b+1有两个零点x1,x2(x1<x2).求证:x1+x2>4.

查看答案和解析>>

同步练习册答案