【题目】已知抛物线
与直线
相交于
、
两点,点
为坐标原点 .
(1)当k=1时,求
的值;
(2)若
的面积等于
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(限定
).
(1)写出曲线
的极坐标方程,并求
与
交点的极坐标;
(2)射线
与曲线
与
分别交于点
(
异于原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,如图,以C为原点,分别以CA,CB,CC1为x,y,z轴建立空间直角坐标系.
![]()
(1)求平面A1B1C的法向量;
(2)求直线AC与平面A1B1C夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙二人进行一次围棋比赛,每局胜者得1分,负者得0分,约定一方比另一方多3分或满9局时比赛结束,并规定:只有一方比另一方多三分才算赢,其它情况算平局,假设在每局比赛中,甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立,已知前3局中,甲胜2局,乙胜1局.
(1) 求甲获得这次比赛胜利的概率;
(2)设
表示从第4局开始到比赛结束所进行的局数,求
得分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现从某学校高一年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于
和
之间,将测量结果按如下方式分成6组:第1组
,第2组
,…,第6组
,下图是按上述分组方法得到的频率分布直方图.
![]()
(1)求这50名男生身高的中位数,并估计该校高一全体男生的平均身高;
(2)求这50名男生当中身高不低于176
的人数,并且在这50名身高不低于176
的男生中任意抽取2人,求这2人身高都低于180
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.某环保人士从当地某年的AQI记录数据中,随机抽取了15天的AQI数据,用如图所示的茎叶图记录.根据该统计数据,估计此地该年空气质量为优或良的天数约为__________.(该年为366天)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:(1)终边相同的角的同名三角比的值相等;(2)终边不同的角的同名三角比的值不同;(3)若
,则
是第一或第二象限角;(4)△
中,若
,则
;其中正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的
列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;
(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.
附:
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且离心率为
.过点
的直线
与椭圆
交于
,
两点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若点
为椭圆
的右顶点,探究:
是否为定值,若是,求出该定值,若不是,请说明理由.(其中,
,
分别是直线
、
的斜率)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com