精英家教网 > 高中数学 > 题目详情
是椭圆 上一点,是椭圆的两个焦点,则的最小值是(    )
A.B.C.D.
A

,
当R=r时,取得最小值,最小值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆经过点(0,1),离心率
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点A关于x轴的对称点为
①试建立 的面积关于m的函数关系;
②某校高二(1)班数学兴趣小组通过试验操作初步推断;“当m变化时,直线与x轴交于一个定点”。你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点和直线分别是椭圆的右焦点和右准线.过点作斜率为的直线,该直线与交于点,与椭圆的一个交点是,且.则椭圆的离心率        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的离心率,过两点的直线到原点的距离是
(1)求椭圆的方程 ; 
(2)已知直线交椭圆于不同的两点,且都在以为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知椭圆的中心在原点,焦点在轴上,经过点,离心率

(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆的左、右顶点分别为,点为直线上任意一点(点不在轴上),
连结交椭圆于点,连结并延长交椭圆于点,试问:是否存在,使得成立,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,过右焦点F且斜率为的直线与相交于A、B两点,若,则=
A、1                B、         C、          D、2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为 斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。
(1)求m的取值范围;
(2)求△OPQ面积的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点是,那么实数的值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆上一点P到焦点F1的距离为7,则点P到F2相对应的准线的距离是____;

查看答案和解析>>

同步练习册答案