精英家教网 > 高中数学 > 题目详情
椭圆的一个焦点是,那么实数的值为(     )
A.B.C.D.
D
解:因为椭圆的一个焦点是,则说明了,且有b2="1," a2=,利用a,b,c关系式可知c2= a2- b2=-1=4,k=1,选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为F(2,0),离心率.
(1)求椭圆的方程;
(2)设直线与椭圆交于不同的A,B两点,与y轴交于E点,且,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上的点到直线的最大距离为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,线段轴的交点满足;⊙O是以F1F2为直径的圆,一直线l与⊙O相切,并与椭圆交于不同的两点AB.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当且满足时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

动点A到定点的距离的和为4,则动点A的轨迹为 (     )
A.椭圆B.线段C.无图形D.两条射线;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)已知离心率为的椭圆 经过点
(1)求椭圆的方程;
(2)过左焦点且不与轴垂直的直线交椭圆两点,若 (为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足(1)求椭圆C的方程;
(2)是否存在直线,当直线交椭圆于P、Q两点时,使点F恰为的垂心(三角形三条高的交点)?若存在,求出直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是长轴长为的椭圆上的三点,点是长轴的一个顶点, 过椭圆中心,且
(1)求椭圆的方程;   
(2)如果椭圆上两点使的平分线垂直,则是否存在实数使?请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆 上一点,是椭圆的两个焦点,则的最小值是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案