精英家教网 > 高中数学 > 题目详情
在△Rt△ABC中,|AB|=2,∠BAC=60°,∠B=90°,G是△ABC的重心,求
GB
GC

考点:平面向量数量积的运算
专题:平面向量及应用
分析:如图所示,由题意可得|AC|=4,设
AB
=
a
AC
=
b
,则
a
b
=4,根据
GB
GC
=
2
3
a
-
1
2
b
)•
2
3
b
-
1
2
a
)=
4
9
a
b
-
a
2
2
-
b
2
2
+
a
2
4
),计算可得结果.
解答: 解:如图所示,由,|AB|=2,∠BAC=60°,∠B=90°,可得|AC|=4.
设E、F分别为AC、AB的中点,设
AB
=
a
AC
=
b
,则
a
b
=2×4×cos60°=4.
GB
=
2
3
EB
=
2
3
a
-
1
2
b
),
GC
=
2
3
FC
=
2
3
b
-
1
2
a
),
GB
GC
=
2
3
a
-
1
2
b
)•
2
3
b
-
1
2
a
)=
4
9
a
b
-
a
2
2
-
b
2
2
+
a
2
4
)=
4
9
(4-2-8+1)=-
20
9
点评:本题主要考查两个向量的数量积的定义,熟练掌握向量的运算法则和重心定理及数量积运算、模的计算公式和三角函数的平方关系及其两角和差的余弦公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读:已知a,b∈(0,+∞),a+b=1,求y=
1
a
+
2
b
的最小值.
解法如下:y=
1
a
+
2
b
=(
1
a
+
2
b
)(a+b)=
b
a
+
2a
b
+3≥3+2
2
,当且仅当
b
a
=
2a
b
,即a=
2
-1,b=2-
2
时取到等号,则y=
1
a
+
2
b
的最小值为3+2
2

应用上述解法,求解下列问题:
(1)已知a,b,c∈(0,+∞),a+b+c=1,求y=
1
a
+
1
b
+
1
c
的最小值;
(2)已知x∈(0,
1
2
),求函数y=
1
x
+
8
1-2x
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是一次函数,且f(f(x))=9x+4
(1)求f(x)的解析式;
(2)若g(x)=x2+2,求g(f(2))的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=
2
,则tanα等于(  )
A、-1
B、-
2
2
C、
2
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=mx,G(x)=lnx.
(1)若f(x)=G(x)-x+1,求函数f(x)的单调区间;
(2)若G(x)+x+2≤g(x)恒成立,求m的取值范围;
(3)令b=G(a)+a+2,求证:b-2a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各圆的标准方程:
(1)圆心在y=-x上且过两点(2,0),(0,-4);
(2)圆心在直线5x-3y=8上,且与坐标轴相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是单调增函数,如果实数t满足f(t)+f(-t)<2f(1),那么t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以F为焦点的抛物线y2=4x上的两点A、B满足
AF
=3
FB
,则弦AB的中点到准线的距离为(  )
A、
8
3
B、
4
3
C、2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:a3<a,命题q:对任意x∈R,都有x2+4ax+1>0,命题p∧q为假,p∨q为真,则实数a的取值范围是.

查看答案和解析>>

同步练习册答案