精英家教网 > 高中数学 > 题目详情

【题目】平面内有两个定点A(1,0),B(1,﹣2),设点P到A、B的距离分别为,且

(I)求点P的轨迹C的方程;

(II)是否存在过点A的直线与轨迹C相交于E、F两点,满足(O为坐标原点).若存在,求出直线的方程;若不存在,请说明理由.

【答案】(II)存在过点A的直线x=1,理由见解析.

【解析】试题分析:(1)设点 坐标,利用两点间距离公式及题中给出的等式可求得的轨迹方程。(2)分两种情况讨论:一、斜率不存在;二、斜率存在。当斜率不存在时,很容易求得三角形面积,满足题中条件;当斜率存在时,可设直线方程,可求得 的长度,及的距离,利用三角形面积为 可求得直线的斜率,得直线方程。

)设Pxy),

d2=

=

整理得: ,

P的轨迹C的方程为

II)存在过点A的直线与轨迹C相交于EF两点,且使三角形S△OEF

理由如下:

当直线的斜率不存在时,直线的方程为x=1

直线过圆心, , 点到直线的距离为1

此时,,所以成立.

当直线斜率存在时,设方程为:

的距离,利用勾股定理,得:

的距离

整理得,无解.所以直线斜率存在时满足题意的直线不存在.

综上,存在过点A的直线x=1,满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每名技工加工零件若干,其中合格零件的个数如下表:

1

2

3

4

5

甲组

4

5

7

9

10

乙组

5

6

7

8

9

1)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;

2)质检部门从该车间甲、乙两组中各随机抽取一名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间质量合格,求该车间质量合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

函数.

1)当时,求函数的定义域;

2)若,判断的奇偶性;

3)是否存在实数,使函数递增,并且最大值为1,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的最小值为,且.

(1)求的解析式;

(2)若在区间上不单调,求实数的取值范围;

(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,,四边形为矩形,平面平面.

1求证:平面

2在线段上运动,设平面与平面二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.

1)图中纵坐标处刻度不清,根据图表所提供的数据还原

2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;

3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件恰好有一个寿命为,一个寿命为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计表明,某种型号的汽车在匀速行驶中每小时的耗油量关于行驶速度千米/小时的函数解析式可以表示为:已知甲、乙两地相距100千米

当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

II当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,则下列命题正确的是( )

A.垂直于同一平面,则平行

B.平行于同一平面,则平行

C.不平行,则在内不存在与平行的直线

D.不平行,则不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制造厂商10月份生产了一批乒乓球,从中随机抽取个进行检查,测得每个球的直径(单位:),将数据进行分组,得到如下频率分布表:

1)求的值,并画出频率分布直方图(结果保留两位小数);

2)已知标准乒乓球的直径为,直径误差不超过的为五星乒乓球,若这批乒乓球共有个,试估计其中五星乒乓球的数目;

3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表,估计这批乒乓球直径的平均值和中位数.

查看答案和解析>>

同步练习册答案