精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x1+x

(1)画出f(x)的草图;
(2)由图象指出f(x)的单调区间;
(3)设a>0,b>0,c>0,a+b>c,证明:f(a)+f(b)>f(c).
分析:(1)化函数为f(x)=1-
1
x+1
,可知它是由反比例函数y=
-1
x
平移而得,作出反比例函数y=
-1
x
的草图,再作相应的平移可得f(x)的草图;
(2)根据(1)中图象的特征,可得出函数的两个单调增区间;
(3)根据函数f(x)的单调性,结合不等式的放缩,可以得出欲证的结论.
解答:精英家教网解:(1)由f(x)=
x
1+x
得f(x)=1-
1
x+1

∴f(x)的图象可由y=-
1
x
的图象向左平移1个
单位,再向上平移1个单位得到如图.

(2)解由图象知(-∞,-1),(-1,+∞)均为f(x)的单调增区间.

(3)证明∵f(x)在(-1,+∞)为增函数,
a
1+a
a
1+a+b
>0 ,
b
1+b
b
1+a+b
>0,a+b>c>0,
∴f(a)+f(b)=
a
1+a
+
b
1+b
a+b
1+a+b
c
1+c

而f(c)=
c
1+c

∴f(a)+f(b)>f(c).
点评:本题考查了函数的图象与单调性的理解,同时还考查了用放缩法证明不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案