分析 (I)由直线PA的斜率存在,设切线PA的方程为:y=k(x-t)(k≠0),与抛物线方程联立化为x2-4kx+4kt=0,利用△=0,解得k=t,可得A坐标.圆C2的圆心D(0,1),设B(x0,y0),由题意可知:点B与O关于直线PD对称,可得$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=-\frac{{x}_{0}}{2t}+1}\\{{x}_{0}t-{y}_{0}=0}\end{array}\right.$,解得B坐标.
(II)由(I)可得:(t2-1)x-2ty+2t=0,可得点P到直线AB的距离d,又|AB|=$\sqrt{(\frac{2t}{1+{t}^{2}}-2t)^{2}+(\frac{2{t}^{2}}{1+{t}^{2}}-{t}^{2})^{2}}$.即可得出S△PAB=$\frac{1}{2}|AB|•d$.
解答 解:(I)由直线PA的斜率存在,设切线PA的方程为:y=k(x-t)(k≠0),联立$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}}\\{y=k(x-t)}\end{array}\right.$,
化为x2-4kx+4kt=0,
∵△=16k2-16kt=0,解得k=t,
∴x=2t,∴A(2t,t2).
圆C2的圆心D(0,1),设B(x0,y0),由题意可知:点B与O关于直线PD对称,
∴$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=-\frac{{x}_{0}}{2t}+1}\\{{x}_{0}t-{y}_{0}=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=\frac{2t}{1+{t}^{2}}}\\{{y}_{0}=\frac{2{t}^{2}}{1+{t}^{2}}}\end{array}\right.$.
∴B$(\frac{2t}{1+{t}^{2}},\frac{2{t}^{2}}{1+{t}^{2}})$.
(II)由(I)可得:kAB=$\frac{\frac{2{t}^{2}}{1+{t}^{2}}-{t}^{2}}{\frac{2t}{1+{t}^{2}}-2t}$=$\frac{{t}^{2}-1}{2t}$,直线AB的方程为:y-t2=$\frac{{t}^{2}-1}{2t}(x-2t)$,化为(t2-1)x-2ty+2t=0,
∴点P到直线AB的距离d=$\frac{|({t}^{2}-1)t+2t|}{\sqrt{({t}^{2}-1)^{2}+(-2t)^{2}}}$=$\frac{{t}^{3}+t}{{t}^{2}+1}$=t,
又|AB|=$\sqrt{(\frac{2t}{1+{t}^{2}}-2t)^{2}+(\frac{2{t}^{2}}{1+{t}^{2}}-{t}^{2})^{2}}$=t2.
∴S△PAB=$\frac{1}{2}|AB|•d$=$\frac{1}{2}{t}^{3}$.
点评 本小题主要考查抛物线、直线与抛物线及其圆的位置关系及其性质、垂直平分线的性质、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,1)∪(3,+∞) | B. | (-3,1)∪(2,+∞) | C. | (-1,1)∪(3,+∞) | D. | (-∞,-1)∪(1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com