精英家教网 > 高中数学 > 题目详情

【题目】设函数 ,a为常数,且f(3)=
(1)求a值;
(2)求使f(x)≥4的x值的取值范围;
(3)设g(x)=﹣ x+m,对于区间[3,4]上每一个x值,不等式f(x)>g(x)恒成立,求实数m的取值范围.

【答案】
(1)解: ,即

∴10﹣3a=1,解得a=3.


(2)由已知

∴10﹣3x≤﹣2.

解得x≥4

故f(x)≥4解集为{x|x≥4}.


(3)依题意f(x)>g(x)化为 恒成立

在[3,4]恒成立

则m<h(x)min,

∵函数 在[3,4]为增函数,

可得h(x)在[3,4]为增函数,

∴m<2.


【解析】(1)由f(3)=,可得,故有10-3a=1,解出a的值,(2)由已知 ,可得10-3x≤-2,由此解得x的范围,(3)根据题意f(x)>g(x)化为恒成立,进行参变分离在[3,4]恒成立,构造函数,找到h(x)min,使得m<h(x)min,可解得m<2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的公比q=2,前3项和是7,等差数列{bn}满足b1=3,2b2=a2+a4 . (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的单调递减区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)与 =(2,sinC)共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=2px(p>0)的焦点为F,准线为L,A、B是抛物线上的两个动点,且满足∠AFB= .设线段AB的中点M在L上的投影为N,则 的最大值是(  )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程: (t为参数),曲线C的参数方程: (α为参数),且直线交曲线C于A,B两点.
(Ⅰ)将曲线C的参数方程化为普通方程,并求θ= 时,|AB|的长度;
(Ⅱ)已知点P:(1,0),求当直线倾斜角θ变化时,|PA||PB|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)对任意的实数x,都有f(1+x)=f(﹣x),且当x≥ 时,f(x)=log2(3x﹣1),那么函数f(x)在[﹣2,0]上的最大值与最小值之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x , 函数g(x)=log x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[( t+1 , ( t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为2,点P为面ADD1A1的对角线AD1的中点.PM⊥平面ABCD交AD与M,MN⊥BD于N.

(1)求异面直线PN与A1C1所成角的大小;(结果可用反三角函数值表示)
(2)求三棱锥P﹣BMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数. (Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

同步练习册答案