精英家教网 > 高中数学 > 题目详情
18.矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,则二面角A-BD-C的余弦值为$\frac{9}{16}$.

分析 过A作AO⊥BD,交BD于O,连结A′O,由AA′⊥平面BCD,知∠AOA′是二面角A-BD-C的平面角,由此能求出二面角A-BD-C的余弦值.

解答 解:∵过A作AO⊥BD,交BD于O,连结A′O,
∵沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,
∴AA′⊥平面BCD,∴∠AOA′是二面角A-BD-C的平面角,
∵矩形ABCD中,AB=3,BC=4,
∴AO=$\frac{AB•AD}{BD}$=$\frac{12}{5}$,BO=$\frac{A{B}^{2}}{BD}=\frac{9}{5}$,tan$∠CBD=\frac{CD}{BC}$=$\frac{3}{4}$,
A′O=OE=BO•tan∠CBD=$\frac{9}{5}•\frac{3}{4}$=$\frac{27}{20}$,
在Rt△AA′O中,∠AA′O=90°,
∴$cos∠AO{A}^{'}=\frac{A{O}^{'}}{AO}=\frac{9}{16}$,
∴二面角A-BD-C的余弦值为$\frac{9}{16}$.
故答案为:$\frac{9}{16}$.

点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.点(a,b)在两直线y=x-2和y=x-4之间的带状区域内(含边界),则f(a,b)=a2-2ab+b2+2a-2b的最小值与最大值的和为32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线l斜率的在[-$\sqrt{3}$,$\frac{\sqrt{3}}{3}$]上取值时,倾斜角的范围是[0,$\frac{π}{6}$]∪[$\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和Sn,n∈N*,a2=5,S8=100
(1)求数列{an}的通项公式
(2)设bn=4an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{xn}的首项x1=3,通项${x_n}={2^n}p+nq$(n∈N*.p,q为常数)且x1,x4,x5成等差数列,求p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数;②存在[m,n]⊆D,使f(x)在[m,n]的值域为[2m,2n],那么就称函数f(x)为“倍域函数”.若f(x)=ln(ex+6x+t)是“倍域函数”,则实数t的取值范围是(  )
A.$(-\frac{3}{4}-6ln\frac{3}{2},2-6ln2)$B.(2-6ln2,+∞)
C.$(-\frac{3}{4}-6ln\frac{3}{2},6ln2-2)$D.(-∞,6ln2-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(文)甘肃平凉“富文荣”试题研究小组在总共的200000套试卷中近期对其3000份试卷进行抽查,发现有2250套试卷紧贴时政、与时俱进,500套试卷没有答案解析,295套试卷命题存在超纲和术语错误.那么在总的试卷中不规范的试卷有50000套.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=Asin(ωx+φ),(ω>0,|φ|<π)在一个周期内的图象如图所示,为了得到y=2sin2x的图象,只需将f(x)的图象(  )
A.向右平移$\frac{5π}{6}$个单位长度B.向左平移$\frac{5π}{6}$个单位长度
C.向右平移$\frac{2π}{3}$个单位长度D.向左平移$\frac{2π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于序列A0:a0,a1,a2,…,an(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,an-1+an,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;An-1=Tn-1(A0).最后得到的序列An-1只有一个数,记作S(A0).
(Ⅰ)若序列A0为1,2,3,求S(A0);
(Ⅱ)若序列A0为1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.

查看答案和解析>>

同步练习册答案