精英家教网 > 高中数学 > 题目详情

【题目】为了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论不正确的是(

A.他们健身后,体重在区间[90kg100kg)内的人数不变

B.他们健身后,体重在区间[100kg110kg)内的人数减少了4

C.他们健身后,这20位健身者体重的中位数位于[90kg100kg

D.他们健身后,原来体重在[110kg120kg]内的肥胖者体重都至少减轻了10kg

【答案】D

【解析】

根据饼图逐个选项计算分析即可.

A,易得们健身后,体重在区间[90kg,100kg)内的人数占比均为,故A正确.

B,体重在区间[100kg,110kg)内的人数减少了,即人.

B正确.

C,因为健身后[80kg,90kg)内的人数占,[90kg,100kg)内的人数占,故中位数位于[90kg,100kg).故C正确.

D,易举出反例若原体重在[110kg,120kg]内的肥胖者重量为,减肥后为依然满足.故D错误.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)若射线的极坐标方程为.相交于点相交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数是偶函数,若方程在区间(其中为自然对数的底)上有两个不相等的实数根,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最小值;

2)当时,求函数的单调区间;

3)当时,设函数,若存在区间,使得函数上的值域为,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,平面平面是边长为2的等边三角形,

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,点EAB上,AE2EB2,且DEAB.DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB60°.

1)求证:平面BFC⊥平面BCDE

2)若直线DF与平面BCDE所成角的正切值为,求二面角EDFC的正弦值.

查看答案和解析>>

同步练习册答案