分析 画出约束条件的可行域,利用目标函数的几何意义,转化求解即可.
解答 解:实数x,y满足$\left\{\begin{array}{l}{x-2y-6≤0}\\{2x+y≥0}\\{y≤2}\end{array}\right.$的可行域如图:
则$\frac{y+4}{x-7}$的几何意义是可行域内的点与D(7,-4)点连线的斜率,
由可行域可知A,C两点与D(7,-4)连线的斜率是临界值,
由$\left\{\begin{array}{l}{y=2}\\{x-2y-6=0}\end{array}\right.$解得A(10,2),$\frac{y+4}{x-7}$≥kAD=$\frac{2+4}{10-7}$=2,
由$\left\{\begin{array}{l}{x-2y-6=0}\\{2x+y=0}\end{array}\right.$解得C($\frac{6}{5}$,-$\frac{12}{5}$),$\frac{y+4}{x-7}$≤kCD=$\frac{-\frac{12}{5}+4}{\frac{6}{5}-7}$=$-\frac{8}{29}$,![]()
则$\frac{y+4}{x-7}$的取值范围为:(-∞,$-\frac{8}{29}$]∪[2,+∞).
故答案为:(-∞,$-\frac{8}{29}$]∪[2,+∞).
点评 本题考查简单的线性规划的应用,画出可行域,判断目标函数的几何意义是解题的关键,考查计算能力,数形结合的应用.
科目:高中数学 来源: 题型:选择题
| A. | p∧(?q) | B. | (?p)∧q | C. | (?p)∧(?q) | D. | p∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 测试指标 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 芯片数量(件) | 8 | 22 | 45 | 37 | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com