精英家教网 > 高中数学 > 题目详情
18.已知公差大于零的等差数列{an},a2+a3+a4=9,且a2+1,a3+3,a4+8为等比数列{bn}的前三项.
(1)求{an},{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,求$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$.

分析 (1)设等差数列{an}的公差为d>0,由a2+a3+a4=9,可得3a3=9,解得a3.由a2+1,a3+3,a4+8为等比数列{bn}的前三项,可得$({a}_{3}+3)^{2}$=(a2+1)(a4+8),代入解得d,即可得出an.再利用等比数列的通项公式即可得出bn
(2)Sn=$\frac{n(n+1)}{2}$,可得$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.利用裂项求和方法即可得出.

解答 解:(1)设等差数列{an}的公差为d>0,∵a2+a3+a4=9,∴3a3=9,解得a3=3.
∵a2+1,a3+3,a4+8为等比数列{bn}的前三项,
∴$({a}_{3}+3)^{2}$=(a2+1)(a4+8),∴62=(3-d+1)(3+d+8),解得d=1.
∴an=a3+(n-3)d=3+n-3=n.
∴a2+1,a3+3,a4+8为等比数列{bn}的前三项,分别为:3,6,12.
∴b1=3,公比q=$\frac{6}{3}$=2.
∴bn=3×2n-1
(2)Sn=$\frac{n(n+1)}{2}$,可得$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.运行如图所示的程序,若输出y的值为1,则输入x的值为(  )
A.0B.0或-1C.±1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z=$\frac{-4+i}{-i}$的共轭复数是(  )
A.-1+4iB.-1-4iC.1+4iD.1-4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|-a<x<a},其中a>0,命题p:1∈A,命题q:2∈A,若p∨q为真命题,p∧q为假命题,则a的取值范围是(  )
A.0<a<1或a>2B.0<a<1或a≥2C.1<a≤2D.1≤a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z=1-i,则$\frac{-3+4i}{z+1}$=(  )
A.-2+iB.2+iC.-1+2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足$\left\{\begin{array}{l}{x-2y-6≤0}\\{2x+y≥0}\\{y≤2}\end{array}\right.$,则$\frac{y+4}{x-7}$的取值范围为(-∞,$-\frac{8}{29}$]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,A=2B.
(I )若sinB=$\frac{\sqrt{5}}{5}$,求cosC的值;
(II)若C为钝角,求$\frac{c}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某省组织了一次高考模拟考试,该省教育部门抽取了1000名考生的数学考试成绩,并绘制成频率分布直方图如图所示.
(Ⅰ)求样本中数学成绩在95分以上(含95分)的学生人数;
(Ⅱ)已知本次模拟考试全省考生的数学成绩X~N(μ,σ2),其中μ近似为样本的平均数,σ2近似为样本方差,试估计该省的所有考生中数学成绩介于100~138.2分的概率;
(Ⅲ)以频率估计概率,若从该省所有考生中随机抽取4人,记这4人中成绩在[105,125)内的人数为X,求X的分布列及数学期望.
参考数据:$\sqrt{356}$≈18.9,$\sqrt{366}$≈19.1,$\sqrt{376}$≈19.4.
若Z∽N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.9826,P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p,q,“¬p为假”是“p∨q为真”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案