分析 (Ⅰ)由已知条件b2+S2=12,S2=b2q,列关于等差数列的第二项及等比数列的公比的二元方程组,求出等差数列的第二项及等比数列的公比,则an与bn可求;
(Ⅱ)把(Ⅰ)中求得的an与bn代入cn=3bn-λ•2${\;}^{\frac{{a}_{n}}{3}}$(λ∈R),整理后把cn+1>cn转化为含有λ和n的表达式,分离参数后利用函数的单调性求函数的最小值,从而求出λ的取值范围.
解答 解:(Ⅰ)由S2=a1+a2=3+a2,b2=b1q=q,
且b2+S2=12,S2=b2q.
∴q+3+a2=12,3+a2=q2,
消去a2得:q2+q-12=0,解得q=3或q=-4(舍),
∴a2=q2-3=6,则公差d=a2-a1=6-3=3,
从而an=a1+(n-1)d=3+3(n-1)=3n,bn=3n-1;
(Ⅱ)∵an=3n,bn=3n-1,
∴cn=3bn-λ•2${\;}^{\frac{{a}_{n}}{3}}$=3n-λ•2n.
∵cn+1>cn对任意的n∈N*恒成立,
即:3n+1-λ•2n+1>3n-λ•2n恒成立,
整理得:λ•2n<2•3n对任意的n∈N*恒成立,
即:λ<2•($\frac{3}{2}$)n对任意的n∈N*恒成立.
∵y=2•($\frac{3}{2}$)n在区间[1,+∞)上单调递增,
∴ymin=3,
∴λ<3.
∴λ的取值范围为(-∞,3).
点评 本题考查了等差数列与等比数列的通项公式,考查了利用分离变量法求参数的范围问题,借助于函数单调性求函数的最小值是解答此题的关键,此题是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | -64 | C. | 128 | D. | -128 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<a<1或a>2 | B. | 0<a<1或a≥2 | C. | 1<a≤2 | D. | 1≤a≤2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y={({\frac{1}{2}})^{|x|}}$ | B. | y=|log2(-x)| | C. | $y={x^{\frac{2}{3}}}$ | D. | y=sin|x| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com