精英家教网 > 高中数学 > 题目详情
16.设平面向量$\overrightarrow a$=( m,1),$\overrightarrow b$=( 2,n ),其中 m,n∈{-2,-1,1,2}.
(I)记“使得$\overrightarrow a$⊥$\overrightarrow b$成立的( m,n )”为事件A,求事件A发生的概率;
(II)记“使得$\overrightarrow a$∥($\overrightarrow a$-2$\overrightarrow b$)成立的( m,n )”为事件B,求事件B发生的概率.

分析 (Ⅰ)先求出基本事件总数N=4×4=16,由$\overrightarrow{a}$⊥$\overrightarrow{b}$,得m=-2n,由此利用列举法求出事件A包含的基本事件(m,n)的个数,由此能求出事件A发生的概率P(A).
(Ⅱ)先求出$\overrightarrow{a}-2\overrightarrow{b}$=(m-4,1-2n),再由$\overrightarrow a$∥($\overrightarrow a$-2$\overrightarrow b$),求出mn=2,利用列举法求出事件B包含的基本事件(m,n)的个数,由此能求出事件B发生的概率P(B).

解答 解:(Ⅰ)∵m,n∈{-2,-1,1,2},
∴基本事件总数N=4×4=16,
记“使得$\overrightarrow a$⊥$\overrightarrow b$成立的( m,n )”为事件A,
由平面向量$\overrightarrow a$=( m,1),$\overrightarrow b$=( 2,n ),$\overrightarrow{a}$⊥$\overrightarrow{b}$,
得$\overrightarrow{a}•\overrightarrow{b}$=2m+n=0,即m=-2n,
∴事件A包含的基本事件(m,n)有:(-2,1)(2,-1),共2个,
∴事件A发生的概率P(A)=$\frac{2}{16}$=$\frac{1}{8}$.
(Ⅱ)记“使得$\overrightarrow a$∥($\overrightarrow a$-2$\overrightarrow b$)成立的( m,n )”为事件B,
由$\overrightarrow{a}-2\overrightarrow{b}$=(m-4,1-2n),$\overrightarrow a$∥($\overrightarrow a$-2$\overrightarrow b$),
得$\frac{m}{m-4}=\frac{1}{1-2n}$,即mn=2,
∴事件B包含的基本事件(m,n)有:(-2,-1),(-1,-2),(1,2),(2,1),共4个,
∴事件B发生的概率P(B)=$\frac{4}{16}=\frac{1}{4}$.

点评 本题考查概率的求法,涉及到平面向量坐标运算法则、向量平行的性质的应用、等可能事件概率计算公式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.执行一次如图所示的程序框图,若输出i的值为0,则下列关于框图中函数f(x)(x∈R)的表述,正确的是(  )
A.f(x)是奇函数,且为减函数B.f(x)是偶函数,且为增函数
C.f(x)不是奇函数,也不为减函数D.f(x)不是偶函数,也不为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个多面体的直观图及三视图如图所示,M、N分别为A1B,B1C1的中点.
(Ⅰ)求证:MN∥平面A1ACC1
(Ⅱ)求证:MN⊥平面A1BC;
(Ⅲ)求二面角C-AB1-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的各项均为正数,且前n项之和Sn满足6Sn=an2+3an+2,且a2、a4、a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列bn=2nan的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-λ•2${\;}^{\frac{{a}_{n}}{3}}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有$\frac{5}{6}$是“年轻人”.

(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
  年轻人非年轻人 合计 
 经常使用共享单车用户   120
 不常使用共享单车用户   80
 合计 160 40 200
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
 P(K2≥k0 0.15 0.100.050  0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635
其中,K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C的对边分别为a、b、c,A=2B,sinB=$\frac{\sqrt{5}}{5}$.
(I )求cosC的值;
(II)求$\frac{c}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知关于x的方程|2x3-8x|+mx=4有且仅有2个实数根,则实数m的取值范围为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-1)∪(1,+∞)C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,AD∥BC,BC⊥CD,点P在底面ABCD上的射影为A,BC=CD=$\frac{1}{2}$AD=1,E为棱AD的中点,M为棱PA的中点.
(1)求证:BM∥平面PCD;
(2)若∠ADP=45°,求二面角A-PC-E的余弦值.

查看答案和解析>>

同步练习册答案