分析 (Ⅰ)分别连结AB1与AC1,推导出MN∥AC1,由此能证明MN∥平面A1ACC1.
(Ⅱ)以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能证明MN⊥平面A1BC.
(Ⅲ)分别求出平面AB1C的法向量和平面AB1C1的法向量,利用向量法能求出二面角C-AB1-C1的大小.
解答 证明:(Ⅰ)如图,分别连结AB1与AC1,![]()
∵M、N分别为A1B,B1C1的中点,∴MN∥AC1,
∵MN?平面A1ACC1,AC1?平面A1ACC1,
∴MN∥平面A1ACC1.
(Ⅱ)以C为原点,CA为x轴,CB为y轴,CC1为z轴,
建立空间直角坐标系,
则B1(0,1,1),A(1,0,0),C1(0,0,1),C(0,0,0),A1(1,0,1),
M($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$),N(0,$\frac{1}{2}$,1),
$\overrightarrow{MN}$=(-$\frac{1}{2}$,0,$\frac{1}{2}$),$\overrightarrow{C{A}_{1}}$=(1,0,1),$\overrightarrow{CB}$=(0,1,0),
∴$\overrightarrow{MN}•\overrightarrow{C{A}_{1}}$=0,$\overrightarrow{MN}•\overrightarrow{CB}$=0,
∴MN⊥CA1,MN⊥CB,
又CA1∩CB=C,∴MN⊥平面A1BC.
解:(Ⅲ)$\overrightarrow{CA}$=(1,0,0),$\overrightarrow{C{B}_{1}}$=(0,1,1),
设平面AB1C的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=x=0}\\{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=y+z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-1),
又$\overrightarrow{A{B}_{1}}$=(-1,1,1),$\overrightarrow{A{C}_{1}}$=(-1,0,1),
设平面AB1C1的法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{A{B}_{1}}=-a+b+c=0}\\{\overrightarrow{m}•\overrightarrow{A{C}_{1}}=-a+c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,0),
设二面角C-AB1-C1的大小为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}•\sqrt{2}}$=$\frac{1}{2}$,∴θ=$\frac{π}{3}$.
∴二面角C-AB1-C1的大小为$\frac{π}{3}$.
点评 本题考查线面平行、线面垂直的证明,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查化归与转化思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | -64 | C. | 128 | D. | -128 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{18}-\frac{y^2}{32}=1$ | B. | $\frac{x^2}{32}-\frac{y^2}{18}=1$ | C. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com