精英家教网 > 高中数学 > 题目详情
9.已知i为虚数单位,复数z1=2+3i,z2=1-i,则$\frac{{z}_{1}}{{z}_{2}}$=(  )
A.-$\frac{1}{2}$-$\frac{5}{2}$iB.-$\frac{1}{2}$+$\frac{5}{2}$iC.$\frac{1}{2}$-$\frac{5}{2}$iD.$\frac{1}{2}$+$\frac{5}{2}$i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:$\frac{{z}_{1}}{{z}_{2}}$=$\frac{2+3i}{1-i}$=$\frac{(2+3i)(1+i)}{(1-i)(1+i)}$=$\frac{-1+5i}{2}$=-$\frac{1}{2}+\frac{5}{2}i$,
故选:B.

点评 本题考查了复数的运算法则、共轭复数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知双曲线C:ax2-y2=1(a>0)
(1)过C1的左顶点引C1的一条渐近线的平行线,若该直线与另一条渐近线及x轴围成的三角形的面积不超过$\frac{\sqrt{2}}{8}$,求实数a的取值范围
(2)设斜率为1的直线l交C1于P,Q两点,若l与圆x2+y2=1相切且$\overrightarrow{OP}$$⊥\overrightarrow{OQ}$,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知?ABCD的对角线AC和BD相交于O,且$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,用向量$\overrightarrow{a}$、$\overrightarrow{b}$分别表示向量$\overrightarrow{OC}$、$\overrightarrow{OD}$、$\overrightarrow{DC}$、$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合M={x|x2-x<0},N={x|-2<x<2},则(  )
A.M∩N=∅B.M∩N=MC.M∪N=MD.M∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在矩形ABCD中,AB=$\frac{3}{2}$,BC=2,沿BD将三角形ABD折起,连接AC,所得三棱锥A-BCD的主视图和俯视图如图所示,则三棱锥A-BCD左视图的面积为(  )
A.$\frac{9}{25}$B.$\frac{18}{25}$C.$\frac{36}{25}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=4x的准线与x轴交于点M,E(x0,0)是x轴上的点,直线l经过M与抛物线C交于A,B两点
(Ⅰ)设l的斜率为$\frac{\sqrt{2}}{2}$,x0=5,求证:点E在以线段AB为直径的圆上;
(Ⅱ)设A,B都在以点E为圆心的圆上,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x2-3x<0,x∈R},B={x||x|>2,x∈R},则A∩B=(  )
A.(2,3)B.(-2,0)C.(-2,3)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设x1,x2为函数f(x)=ax2+(b-1)x+1(a,b∈R,a>0)两个不同零点.
(Ⅰ)若x1=1,且对任意x∈R,都有f(2-x)=f(2+x),求f(x);
(Ⅱ)若b=2a-3,则关于x的方程f(x)=|2x-a|+2是否存在负实根?若存在,求出该负根的取值范围,若不存在,请说明理由;
(Ⅲ)若a≥2,x2-x1=2,且当x∈(x1,x2)时,g(x)=-f(x)+2(x2-x)的最大值为h(a),求h(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的内角A、B、C对的边分别为a、b、c,sinA+$\sqrt{2}$sinB=2sinC,b=3,当内角C最大时,△ABC的面积等于(  )
A.$\frac{9+3\sqrt{3}}{4}$B.$\frac{6+3\sqrt{2}}{4}$C.$\frac{3\sqrt{2\sqrt{6}-\sqrt{2}}}{4}$D.$\frac{3\sqrt{6}-3\sqrt{2}}{4}$

查看答案和解析>>

同步练习册答案