精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为      

试题分析:由点在抛物线上,则,得,利用抛物线的定义可得点M到焦点的距离等于到准线的距离,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M

(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·江西高考]抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为
,则(   )
A.   B.  C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若|AB|=,|AF|<|BF|,则|AF|为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )
【选项】
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点的直线交抛物线于A,B两点,点O是原点,若;则△AOB的面积为(   )
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标为.

查看答案和解析>>

同步练习册答案