精英家教网 > 高中数学 > 题目详情
设函数时取得极值.
(1)求、b的值;
(2)若对于任意的,都有成立,求c的取值范围.
(1)(2)

试题分析:解:(1)
因为函数取得极值,则有

解得
(2)由(1)可知,

时,
时,
时,
所以,当时,取得极大值,又
则当时,的最大值为
因为对于任意的,有恒成立,
所以 
解得 
因此的取值范围为
点评:主要是根据导数的符号于函数单调性的关系来得到函数的极值和最值,得到求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

等于(  )
A.-2ln 2B.2ln 2C.-ln 2D.ln 2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线y=在点(0,2)处的切线方程为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,则该函数曲线在处的切线与曲线围成的封闭图形的面积是 ( ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设等差数列{an}的前n项和为Sn,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,则下列结论正确的是(  )
A.S2 011=2 011,a2 007<a5B.S2 011=2 011,a2 007>a5
C.S2 011=-2 011,a2 007≤a5D.S2 011=-2 011,a2 007≥a5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若无极值点,但其导函数有零点,求的值;
(Ⅱ)若有两个极值点,求的取值范围,并证明的极小值小于

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)已知函数h(x)=g(x)+ax3的一个极值点为1,求a的取值;
(2) 求函数上的最小值;
(3)对一切恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数处取极值,则            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的最大值是(   )
A.1B.C.0D.-1

查看答案和解析>>

同步练习册答案