精英家教网 > 高中数学 > 题目详情
16.已知正项数列{an}的前n项和为Sn,满足Sn=2an-$\frac{1}{2}$.
(1)证明:数列{an}是等比数列;
(2)若bn=log2an+3,求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Tn

分析 (1)利用递推公式、等比数列的定义即可证明;
(2)利用对数的运算性质、“裂项求和”即可得出.

解答 (1)证明:∵${S_n}=2{a_n}-\frac{1}{2}$,
∴当n=1时,${a}_{1}=2{a}_{1}-\frac{1}{2}$,解得a1=$\frac{1}{2}$;
当n≥2时,an=Sn-Sn-1=$2{a}_{n}-\frac{1}{2}$-$(2{a}_{n-1}-\frac{1}{2})$,化为an=2an-1
∴数列{an}是等比数列,首项为$\frac{1}{2}$,公比为2;
(2)解:由(1)可得${a}_{n}=\frac{1}{2}×{2}^{n-1}$=2n-2
∴bn=log2an+3=n-2+3=n+1.
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Tn=$(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$.

点评 本题考查了递推公式、等比数列的定义、对数的运算性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=1-xlnx的零点所在区间是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=|x-1|+|x+4|的值域为[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足不等式组$\left\{{\begin{array}{l}{2x+y-4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}}\right.$,则3x+2y的最大值是(  )
A.6B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=$\int_{-x}^x{cos2tdt}$,则$f({f({\frac{π}{4}})})$=(  )
A.1B.sin1C.sin2D.2sin4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)是R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(2015)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx,x>2}\\{\frac{b-1}{x},x≤2}\end{array}\right.$在(0,+∞)为增函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数的图象如图所示,根据此图象你能写出这个函数的解析式吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若定义在R上的函数y=f(x)满足f(x+1)=$\frac{1}{f(x)}$且当x∈(0,1]时,f(x)=x,函数g(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{x+1}(x≤0)}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-4,4]内的零点个数为5.

查看答案和解析>>

同步练习册答案