| A. | 6 | B. | 7 | C. | 9 | D. | 10 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{{\begin{array}{l}{2x+y-4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}}\right.$作出可行域如图,![]()
令z=3x+2y,化为$y=-\frac{3}{2}x+\frac{z}{2}$,
由图可知,当直线$y=-\frac{3}{2}x+\frac{z}{2}$过点B(3,0)时,直线在y轴上的截距最大,z有最大值为3×3=9.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | b<c<a | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,5} | C. | {1,4} | D. | {1,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com