精英家教网 > 高中数学 > 题目详情
15.化简:
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x)

分析 由两角和与差的正弦函数公式及特殊角的三角函数值即可化简求解.

解答 解:(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx=6$\sqrt{5}$($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=6$\sqrt{5}$sin(x+$\frac{π}{6}$);
(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx=$\sqrt{3}$($\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx)=$\sqrt{3}$cos(x+$\frac{π}{6}$);
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$=2($\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$+$\frac{1}{2}$cos$\frac{x}{2}$)=2sin($\frac{x}{2}$+$\frac{π}{6}$);
(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x)=$\frac{\sqrt{2}}{2}$[$\frac{1}{2}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{3}}{2}$cos($\frac{π}{4}$-x)]=$\frac{\sqrt{2}}{2}$sin($\frac{π}{4}$-x+$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$sin($\frac{7π}{12}$-x).

点评 本题主要考查了两角和与差的正弦函数公式、余弦函数公式及特殊角的三角函数值的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.tan105°=-(2+$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tan(π+α)=-$\frac{1}{3}$,tan(α+β)=$\frac{sinα+2cosα}{5cosα-sinα}$.
(1)求tan(α+β)的值;
(2)求tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.正三角形ABC的边长为4,D、E分别是AB、AC的中点,求:
(1)$\overrightarrow{DE}$•$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若△ABC的三个内角A,B,C成等比数列,则B的取值范围是(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an}的首项为10,其前n项和Sn满足3Sn+1=3Sn+2an,数列{lgan}的前n项和Tn的最大值为6+15lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$),g(x)=cos2(x-$\frac{π}{4}$)-$\frac{1}{2}$,则下列说法中正确的是(  )
A.函数f(x),g(x)的最小正周期都为2π
B.函数f(x),g(x)都是偶函数
C.将f(x)的图象向左平移$\frac{π}{4}$个单位可以得到g(x)的图象
D.将f(x)的图象向右平移$\frac{π}{4}$个单位可以得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是一样本的频率分布直方图,由图形中的数据可以估计众数与中位数分别是(  )
A.105,115B.105,105C.105,$\frac{310}{3}$D.115,115

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,k∈R.
(Ⅰ)当k=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当k=e时,试判断函数f(x)是否存在零点,并说明理由;
(Ⅲ)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案