精英家教网 > 高中数学 > 题目详情
6.已知tan(π+α)=-$\frac{1}{3}$,tan(α+β)=$\frac{sinα+2cosα}{5cosα-sinα}$.
(1)求tan(α+β)的值;
(2)求tanβ的值.

分析 (1)利用诱导公式化简已知条件,求出正切函数值,代入tan(α+β)求解即可;
(2)利用(1)结合两角和的正切函数,化简求tanβ的值.

解答 解:(1)tan(π+α)=-$\frac{1}{3}$,
可得tanα=$-\frac{1}{3}$,
tan(α+β)=$\frac{sinα+2cosα}{5cosα-sinα}$=$\frac{tanα+2}{5-tanα}$=$\frac{-\frac{1}{3}+2}{5+\frac{1}{3}}$=$\frac{5}{16}$.
(2)$\frac{5}{16}$=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{-\frac{1}{3}+tanβ}{1+\frac{1}{3}tanβ}$,
解得tanβ=$\frac{31}{43}$.

点评 本题考查两角和与差的三角函数,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s内(称为合格)的概率分别为$\frac{2}{5}$,$\frac{3}{4}$,$\frac{1}{3}$,若对这三名短跑运动员的100米跑的成绩进行一次检测.求:
(1)三人都合格的概率;
(2)三人都不合格的概率;
(3)出现几人合格的概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.正四棱锥P-ABCD,棱长都为a,O为P在底面射影,E,F,M为PC,AB,PO中点.
求(1)VP-EFB;(2)VC-FME;(3)VA-EMF;(4)VE-DMB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.学校游园活动有这样一个项目:甲箱子里装3个白球、2个黑球,乙箱子里装2个白球、2个黑球,从这两个箱子里分别摸出1个球,若它们都是白球则获奖,有人认为,两个箱子里装的白球比黑球多,所以获奖的概率大于0.5,你认为呢?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.点P在圆x2+y2-8x-4y+11=0上,点Q在圆x2+y2+4x+2y+1=0上,则|PQ|的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.说出函数y=-$\frac{1}{2}$sin($\frac{x}{2}$-$\frac{π}{4}$)的定义域、最小正周期、最大值、最小值、单调区间、与x轴的交点坐标以及函数值大于0、小于0的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=cosx•cos(x-$\frac{π}{3}$).
(1)求f($\frac{π}{4}$)的值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<3}\\{{2}^{x},x≥3}\end{array}\right.$,则f[f(2)]=(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案