精英家教网 > 高中数学 > 题目详情
3.正三角形ABC的边长为4,D、E分别是AB、AC的中点,求:
(1)$\overrightarrow{DE}$•$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.

分析 (1)运用中位线定理的运用,以及向量的平方即为模的平方,计算即可得到;
(2)运用向量的数量积的定义,计算即可得到所求值.

解答 解:(1)D、E分别是AB、AC的中点,可得:
$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{BC}$,
则$\overrightarrow{DE}$•$\overrightarrow{BC}$=$\frac{1}{2}$$\overrightarrow{BC}$2=$\frac{1}{2}$|$\overrightarrow{BC}$|2=$\frac{1}{2}$×16=8;
(2)$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cosA=4×4×cos60°
=16×$\frac{1}{2}$=8.

点评 本题考查向量的数量积的定义和性质,主要是向量的平方即为模的平方,同时考查中位线定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=2,an+1=a${\;}_{n}^{2}$-nan+1(n∈N*
(Ⅰ)求a2,a3,a4的值,猜出通项an,并用数学归纳法证明你的结论;
(Ⅱ)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.学校游园活动有这样一个项目:甲箱子里装3个白球、2个黑球,乙箱子里装2个白球、2个黑球,从这两个箱子里分别摸出1个球,若它们都是白球则获奖,有人认为,两个箱子里装的白球比黑球多,所以获奖的概率大于0.5,你认为呢?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.说出函数y=-$\frac{1}{2}$sin($\frac{x}{2}$-$\frac{π}{4}$)的定义域、最小正周期、最大值、最小值、单调区间、与x轴的交点坐标以及函数值大于0、小于0的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=cosx•cos(x-$\frac{π}{3}$).
(1)求f($\frac{π}{4}$)的值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若不等式kx2+2kx+(k+2)<0对于一切x(x∈R)的解集为∅,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的一个零点x0∈(2,4)在用二分法求精确度为0.01的x0的值时,判断区间中点的函数值的符号最少(  )
A.5次B.6次C.7次D.8次

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为(  )
A.$1-\frac{{\sqrt{3}}}{6}$B.$1-\frac{{\sqrt{3}π}}{6}$C.$1-\frac{{\sqrt{3}}}{3}$D.$1-\frac{{\sqrt{3}π}}{3}$

查看答案和解析>>

同步练习册答案