精英家教网 > 高中数学 > 题目详情
3.在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为(  )
A.$1-\frac{{\sqrt{3}}}{6}$B.$1-\frac{{\sqrt{3}π}}{6}$C.$1-\frac{{\sqrt{3}}}{3}$D.$1-\frac{{\sqrt{3}π}}{3}$

分析 根据几何概型的概率公式求出对应区域的面积,求概率即可.

解答 解:若点P到三个顶点的距离都不小于1,
则P的位置位于阴影部分,如图所示,

三角形在三个圆的面积之和为$\frac{1}{2}$×π×12=$\frac{π}{2}$,
△ABC的面积S=$\frac{1}{2}$×22×sin60°=$\sqrt{3}$,
则阴影部分的面积S=$\sqrt{3}$-$\frac{π}{2}$,
则对应的概率P=$\frac{\sqrt{3}-\frac{π}{2}}{\sqrt{3}}$=1-$\frac{\sqrt{3}π}{6}$.
故选:B.

点评 本题主要考查了几何概型的概率计算问题,根据条件求出阴影部分的面积是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.正三角形ABC的边长为4,D、E分别是AB、AC的中点,求:
(1)$\overrightarrow{DE}$•$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是一样本的频率分布直方图,由图形中的数据可以估计众数与中位数分别是(  )
A.105,115B.105,105C.105,$\frac{310}{3}$D.115,115

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a、b为两条异面直线,且分别在两个平面α、β内,若α∩β=l,则直线l(  )
A.与a、b 都相交B.与a、b都不相交
C.至少与a、b中的一条相交D.至多与a、b中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中为真命题的是(  )
A.若x≠0,则x+$\frac{1}{x}$≥2
B.“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件
C.若命题p:任意x∈R,x2-x+1<0,则¬p:存在x∈R,x2-x+1>0
D.命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x2≠1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61.
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|和|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(3)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,作△ABC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,k∈R.
(Ⅰ)当k=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当k=e时,试判断函数f(x)是否存在零点,并说明理由;
(Ⅲ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x+2cosx在(0,2π)上的单调递减区间为$(\frac{π}{6},\frac{5π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+kx2-x+m,k,m∈R
(Ⅰ)若k=f′($\frac{2}{3}$),求f(x)的单调区间
(Ⅱ)若函数f(x)在(1,2)上单调递增,求k的范围.

查看答案和解析>>

同步练习册答案