8£®ÒÑÖª|$\overrightarrow{a}$|=4£¬|$\overrightarrow{b}$|=3£¬£¨2$\overrightarrow{a}$-3$\overrightarrow{b}$£©•£¨2$\overrightarrow{a}$+$\overrightarrow{b}$£©=61£®
£¨1£©Çó$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½Ç¦È£»
£¨2£©Çó|$\overrightarrow{a}$+$\overrightarrow{b}$|ºÍ|$\overrightarrow{a}$-$\overrightarrow{b}$|£»
£¨3£©Èô$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬×÷¡÷ABC£¬Çó¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨1£©¸ù¾ÝÏòÁ¿µÄÊýÁ¿»ýµÄÔËËãºÍÏòÁ¿µÄ¼Ð½Ç¹«Ê½¼´¿ÉÇó³ö£»
£¨2£©¿ÉÏÈÆ½·½×ª»¯ÎªÏòÁ¿µÄÊýÁ¿»ý£¬¼´¿ÉÇó³ö|$\overrightarrow{a}$+$\overrightarrow{b}$|ºÍ|$\overrightarrow{a}$-$\overrightarrow{b}$|£»
£¨3£©ÏȼÆËãa£¬b¼Ð½ÇµÄÕýÏÒ£¬ÔÙÓÃÃæ»ý¹«Ê½ÇóÖµ£®

½â´ð ½â£º£¨1£©ÓÉ£¨2a-3b£©•£¨2a+b£©=61£¬
µÃ4|a|2-4a•b-3|b|2=61£®
¡ß|a|=4£¬|b|=3£¬´úÈëÉÏʽÇóµÃa•b=-6£¬
¡àcos¦È=$\frac{a•b}{|a|•|b|}$=$\frac{-6}{4¡Á3}$=-$\frac{1}{2}$£¬
Ó֦ȡÊ[0¡ã£¬180¡ã]£¬
¡à¦È=120¡ã£®
£¨2£©|a+b|2=£¨a+b£©2=|a|2+2a•b+|b|2
=42+2£¨-6£©+32=13£¬
¡à|a+b|=$\sqrt{13}$£®
ͬÀí£¬|a-b|=$\sqrt{a2-2a•b+b2}$=$\sqrt{37}$£¬
£¨3£©ÓÉ£¨1£©Öª¡ÏBAC=¦È=120¡ã£¬
|$\overrightarrow{AB}$|=|a|=4£¬|$\overrightarrow{AC}$|=|b|=3£¬
¡àS¡÷ABC=$\frac{1}{2}$|$\overrightarrow{AC}$|•|$\overrightarrow{AB}$|•sin¡ÏBAC
=$\frac{1}{2}$¡Á3¡Á4sin120¡ã=3$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÊýÁ¿½âµÃÔËËãºÍÏòÁ¿µÄ¼Ð½Ç¹«Ê½ÒÔ¼°ÏòÁ¿µÄÄ£ºÍÈý½ÇÐεÄÃæ»ý¹«Ê½£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èô²»µÈʽkx2+2kx+£¨k+2£©£¼0¶ÔÓÚÒ»ÇÐx£¨x¡ÊR£©µÄ½â¼¯Îª∅£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª¹«±ÈΪqµÄµÈ±ÈÊýÁÐ{an}ǰnÏîÖ®»ýΪTn£¬ÇÒT3=$\frac{1}{4}$£¬T6=32£¬ÔòqµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÍÖÔ²CÁ½½¹µã×ø±êΪ£¨-1£¬0£©ºÍ£¨1£¬0£©£¬µãP£¨1£¬$\frac{\sqrt{2}}{2}$£©ÔÚÍÖÔ²ÉÏ£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôÏß¶ÎABÊÇÍÖÔ²CµÄÒ»Ìõ¶¯ÏÒ£¬ÇÒ|AB|=2£¬Çó×ø±êÔ­µãOµ½Ö±ÏßAB¾àÀëµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ôڱ߳¤Îª2µÄÕýÈý½ÇÐÎÄÚ²¿Ëæ»úȡһ¸öµã£¬Ôò¸Ãµãµ½Èý½ÇÐÎ3¸ö¶¥µãµÄ¾àÀë¶¼²»Ð¡ÓÚ1µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$1-\frac{{\sqrt{3}}}{6}$B£®$1-\frac{{\sqrt{3}¦Ð}}{6}$C£®$1-\frac{{\sqrt{3}}}{3}$D£®$1-\frac{{\sqrt{3}¦Ð}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÊýÁÐ{an}µÄǰnÏîºÍSn£¬${a_1}=1£¬{a_n}=\frac{S_n}{n}+2£¨n-1£©£¨n¡Ê{N^*}£©$
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢ÇóanÓëSn£»
£¨2£©ÊÇ·ñ´æÔÚ×ÔÈ»Êýn£¬Ê¹µÃ${S_1}+\frac{S_2}{2}+\frac{S_3}{3}+¡­+\frac{S_n}{n}-{£¨n-1£©^2}=2015£¿$£¬Èô´æÔÚ£¬Çó³önµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\frac{a£¨x-1£©}{{x}^{2}}$£¬ÆäÖÐa£¾0£®
£¨1£©ÈôÖ±Ïßy=kx-1ÓëÇúÏßy=f£¨x£©ÏàÇÐÓڵ㣨1£¬0£©£¬Çóa£¬kµÄÖµ
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶ÔÓÚRÉϿɵ¼µÄÈÎÒ⺯Êýf£¨x£©£¬ÈôÂú×㣨x-3£©f¡ä£¨x£©¡Ü0£¬Ôò±ØÓУ¨¡¡¡¡£©
A£®f£¨0£©+f£¨6£©¡Ü2f£¨3£©B£®f£¨0£©+f£¨6£©£¼2f£¨3£©C£®f£¨0£©+f£¨6£©¡Ý2f£¨3£©D£®f£¨0£©+f£¨6£©£¾2f£¨3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=lnx+x2-ax£¨aΪ³£Êý£©£®
£¨¢ñ£©Èôx=1ÊǺ¯Êýf£¨x£©µÄÒ»¸ö¼«Öµµã£¬ÇóaµÄÖµ£»
£¨¢ò£©µ±0£¼a¡Ü4ʱ£¬ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸