精英家教网 > 高中数学 > 题目详情
17.对于R上可导的任意函数f(x),若满足(x-3)f′(x)≤0,则必有(  )
A.f(0)+f(6)≤2f(3)B.f(0)+f(6)<2f(3)C.f(0)+f(6)≥2f(3)D.f(0)+f(6)>2f(3)

分析 分x≥3和x<3两种情况对(x-3)f′(x)≤0进行讨论,由极值的定义可得当x=3时f(x)取得极大值也为最大值,故问题得证.

解答 解:依题意,当x≥3时,f′(x)≤0,函数f(x)在(3,+∞)上是减函数;
当x<3时,f′(x)>0,f(x)在(-∞,3)上是增函数,
故当x=3时f(x)取得极大值也为最大值,即有
f(0)≤f(3),f(6)≤f(3),
∴f(0)+f(6)≤2f(3).
故选:A.

点评 本题以解不等式的形式,考查了利用导数求函数极值的方法,同时灵活应用了分类讨论的思想,是一道好题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}满足:a2+a4=6,a6=S3,其中Sn为数列{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若k∈N*,{bn}为等比数列且b1=ak,b2=a3k,b3=S2k,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61.
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|和|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(3)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,作△ABC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)<1,f(0)=2016,则不等式exf(x)-ex>2015(其中e为自然对数的底数)的解集为(  )
A.(2015,+∞)B.(-∞,0)∪(2015,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x+2cosx在(0,2π)上的单调递减区间为$(\frac{π}{6},\frac{5π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x3+2x2-ax+1在区间(0,1)上不是单调函数,则实数a的取值范围是(0,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设h(x)=2x-sinx,g(x)=lnx+3x,f(x)=$\frac{{{e^x}-{e^{-x}}}}{2}$,k(x)=$\frac{1}{x}$-x,则(  )
A.h(sin27°)>h(sin26°)B.g(20.1)>g(20.2C.f(π)<f(3)D.k(ln2)<k(ln3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y-6=0平行.
(1)求实数a的值;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功的交易,并对其评价进行统计,对商品的好评率为$\frac{3}{5}$,对服务的好评率为$\frac{3}{4}$,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案