7£®½üÄêÀ´ÎÒ¹úµç×ÓÉÌÎñÐÐÒµÓ­À´Åñ²¼·¢Õ¹µÄлúÓö£¬2015ÄêË«11ÆÚ¼ä£¬Ä³¹ºÎïÆ½Ì¨µÄÏúÊÛÒµ¼¨¸ß´ï918ÒÚÈËÃñ±Ò£®Óë´Ëͬʱ£¬Ïà¹Ø¹ÜÀí²¿ÃÅÒ²ÍÆ³öÁËÕë¶ÔµçÉ̵ÄÉÌÆ·ºÍ·þÎñµÄÆÀ¼ÛÌåϵ£®ÏÖ´ÓÆÀ¼ÛϵͳÖÐÑ¡³ö200´Î³É¹¦µÄ½»Ò×£¬²¢¶ÔÆäÆÀ¼Û½øÐÐͳ¼Æ£¬¶ÔÉÌÆ·µÄºÃÆÀÂÊΪ$\frac{3}{5}$£¬¶Ô·þÎñµÄºÃÆÀÂÊΪ$\frac{3}{4}$£¬ÆäÖжÔÉÌÆ·ºÍ·þÎñ¶¼×ö³öºÃÆÀµÄ½»Ò×Ϊ80´Î£®
£¨1£©ÊÇ·ñ¿ÉÒÔÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ¿
£¨2£©ÈôÕë¶ÔÉÌÆ·µÄºÃÆÀÂÊ£¬²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬²¢´ÓÖÐÑ¡ÔñÁ½´Î½»Ò×½øÐпͻ§»Ø·Ã£¬ÇóÖ»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊ£®
 P£¨K2¡Ýk£© 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
£¨${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

·ÖÎö £¨1£©ÓÉÒÑÖªÁгö¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£¬´úÈ빫ʽÇóµÃk2µÄÖµ£¬¶ÔÓ¦Êý±íµÃ´ð°¸£»
£¨2£©²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬ÔòºÃÆÀµÄ½»Ò×´ÎÊýΪ3´Î£¬²»ÂúÒâµÄ´ÎÊýΪ2´Î£¬ÀûÓÃö¾Ù·¨µÃµ½´Ó5´Î½»Ò×ÖУ¬È¡³ö2´ÎµÄËùÓÐÈ¡·¨£¬²é³öÆäÖÐÖ»ÓÐÒ»´ÎºÃÆÀµÄÇé¿öÊý£¬È»ºóÀûÓùŵä¸ÅÐ͸ÅÂʼÆË㹫ʽÇóµÃÖ»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£º

¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶ÔÉÌÆ·ºÃÆÀ8040120
¶ÔÉÌÆ·²»ÂúÒâ701080
ºÏ¼Æ15050200
µÃ${K^2}=\frac{{200¡Á{{£¨80¡Á10-40¡Á70£©}^2}}}{150¡Á50¡Á120¡Á80}¡Ö11.111£¾10.828$£¬
¿ÉÒÔÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ®
£¨2£©ÈôÕë¶ÔÉÌÆ·µÄºÃÆÀÂÊ£¬²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬ÔòºÃÆÀµÄ½»Ò×´ÎÊýΪ3´Î£¬²»ÂúÒâµÄ´ÎÊýΪ2´Î£¬ÁîºÃÆÀµÄ½»Ò×ΪA£¬B£¬C£¬²»ÂúÒâµÄ½»Ò×Ϊa£¬b£¬´Ó5´Î½»Ò×ÖУ¬È¡³ö2´ÎµÄËùÓÐÈ¡·¨Îª£¨A£¬B£©¡¢£¨A£¬C£©¡¢£¨A£¬a£©¡¢£¨A£¬b£©¡¢£¨B£¬C£©¡¢£¨B£¬a£©¡¢£¨B£¬b£©¡¢£¨C£¬a£©¡¢£¨C£¬b£©¡¢£¨a£¬b£©£¬¹²¼Æ10ÖÖÇé¿ö£¬ÆäÖÐÖ»ÓÐÒ»´ÎºÃÆÀµÄÇé¿öÊÇ£¨A£¬a£©¡¢£¨A£¬b£©¡¢£¨B£¬a£©¡¢£¨B£¬b£©¡¢£¨C£¬a£©¡¢£¨C£¬b£©£¬¹²¼Æ6ÖÖ£¬
Òò´Ë£¬Ö»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊΪ$\frac{6}{10}=\frac{3}{5}$£®

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éͳ¼ÆÓë¸ÅÂʵÄÏà¹ØÖªÊ¶£¬¶Ô¿¼ÉúµÄ¶ÔÊý¾Ý´¦ÀíµÄÄÜÁ¦ÓкܸßÒªÇó£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶ÔÓÚRÉϿɵ¼µÄÈÎÒ⺯Êýf£¨x£©£¬ÈôÂú×㣨x-3£©f¡ä£¨x£©¡Ü0£¬Ôò±ØÓУ¨¡¡¡¡£©
A£®f£¨0£©+f£¨6£©¡Ü2f£¨3£©B£®f£¨0£©+f£¨6£©£¼2f£¨3£©C£®f£¨0£©+f£¨6£©¡Ý2f£¨3£©D£®f£¨0£©+f£¨6£©£¾2f£¨3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=lnx+x2-ax£¨aΪ³£Êý£©£®
£¨¢ñ£©Èôx=1ÊǺ¯Êýf£¨x£©µÄÒ»¸ö¼«Öµµã£¬ÇóaµÄÖµ£»
£¨¢ò£©µ±0£¼a¡Ü4ʱ£¬ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬f£¨-1£©=-1£¬ÓÐxf¡ä£¨x£©£¾f£¨x£©£¬Ôò²»µÈʽf£¨x£©£¾xµÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬0£©B£®£¨1£¬+¡Þ£©C£®£¨-1£¬0£©U£¨1£¬+¡Þ£©D£®£¨-¡Þ£¬-1£©U£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{3}{x^3}-b{x^2}+2x-a$£¬x=2ÊÇf£¨x£©µÄÒ»¸ö¼«Öµµã£®
£¨¢ñ£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©µ±a£¾0ʱ£¬Çó·½³Ìf£¨x£©=0µÄ½âµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{x}+lnx$
£¨1£©Çóº¯ÊýÔÚx=e´¦µÄÇÐÏß·½³Ì
£¨2£©Ð´³öº¯ÊýµÄµ¥µ÷ÔöÇø¼äºÍ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªf£¨x£©Îª¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£¬¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬¶¼Âú×ãf[f£¨x£©-log2x]=3£¬Ôòº¯Êýy=f£¨x£©-f¡ä£¨x£©-2£¨f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£©µÄÁãµãËùÔÚÇø¼äÊÇ£¨¡¡¡¡£©
A£®$£¨{0£¬\frac{1}{2}}£©$B£®$£¨{\frac{1}{2}£¬1}£©$C£®£¨1£¬2£©D£®£¨2£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®É躯Êýg£¨x£©=x2-6£¨x¡ÊR£©£¬$f£¨x£©=\left\{\begin{array}{l}g£¨x£©+x+4£¬x£¼g£¨x£©\\ g£¨x£©-x£¬\;\;\;\;\;x¡Ýg£¨x£©\end{array}\right.$£¬Ôòf£¨1£©=-6£¬f£¨x£©µÄÖµÓòÊÇ[-$\frac{25}{4}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®$\int_1^2{£¨{e^x}-\frac{2}{x}£©}dx$=e2-e-2ln2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸