| A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (1,2) | D. | (2,3) |
分析 设t=f(x)-log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,由二分法分析可得h(x)的零点所在的区间为(1,2).
解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,
又由f(x)是定义在(0,+∞)上的单调递增函数,
则f(x)-log2x为定值,
设t=f(x)-log2x,则f(x)=log2x+t,
又由f(t)=3,即log2t+t=3,
解可得,t=2;
则f(x)=log2x+2,f′(x)=$\frac{1}{ln2•x}$,
将f(x)=log2x+2,f′(x)=$\frac{1}{ln2•x}$代入f(x)-f′(x)=2,
可得log2x+2-$\frac{1}{ln2•x}$=2,
即log2x-$\frac{1}{ln2•x}$=0,
令h(x)=log2x-$\frac{1}{ln2•x}$,
分析易得h(1)=$\frac{1}{ln2}$<0,h(2)=1-$\frac{1}{2ln2}$>0,
则h(x)的零点在(1,2)之间,
故选:C.
点评 本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式.
科目:高中数学 来源: 题型:选择题
| A. | h(sin27°)>h(sin26°) | B. | g(20.1)>g(20.2) | C. | f(π)<f(3) | D. | k(ln2)<k(ln3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$ | |
| B. | 两个有共同起点且相等的向量,其终点可能不同 | |
| C. | 向量$\overrightarrow{AB}$的长度与向量$\overrightarrow{BA}$的长度相等 | |
| D. | 若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点共线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com