精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x2-4lnx
(1)求函数f(x)的单调区间;
(2)若函数g(x)=$\frac{f(x)}{2}$+3lnx-ax(a>0),证明:函数g(x)有且仅有1个零点.

分析 (1)求出函数的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(2)通过讨论a的范围结合函数的单调性以及根的判别式证明即可.

解答 (1)解:f(x)的定义域是(0,+∞),f′(x)=$\frac{2(x-\sqrt{2})(x+\sqrt{2})}{x}$,
故0<x<$\sqrt{2}$时,f′(x)<0,x>$\sqrt{2}$时,f′(x)>0,
∴f(x)在(0,$\sqrt{2}$)递减,在($\sqrt{2}$,+∞)递增;
(2)证明:g(x)=$\frac{{x}^{2}}{2}$+lnx-ax,g′(x)=$\frac{{x}^{2}-ax+1}{x}$,
令g′(0)=0,得:x2-ax+1=0,
当△=a2-4≤0,即0<a≤2时,g′(x)>0,g(x)在(0,+∞)递增,
∴g(x)最多只有一个零点;
∵g(x)=$\frac{1}{2}$x(x-2a)+lnx,0<x<2a且x<1时,g(x)<0,
当x>2a且x>1时,g(x)>0,
∴g(x)有且只有一个零点;
当△=a2-4>0,即a>2时,不妨设方程x2-ax+1=0的两根是x1,x2,(x1<x2),
则0<x1<1<x2,则在区间(0,x1 ),(x2,+∞)递增,在(x1,x2)递减,
由于${{x}_{1}}^{2}$-ax1+1=0,∴g(x1)=$\frac{1}{2}$${{x}_{1}}^{2}$+lnx1-ax1=lnx1-$\frac{1}{2}$${{x}_{1}}^{2}$-1,
令h(t)=lnt-$\frac{1}{2}$t2-1,t∈(0,1),则h′(t)=$\frac{1}{t}$-t>0,
∴h(t)在(0,1)递增,∴h(x1)<h(1)=-$\frac{3}{2}$<0,
由此得g(x2)<g(x1)<0,
又∵x>2a且x>1时,g(x)>0,故g(x)在(0,+∞)有且只有一个零点,
综上,a>0时,g(x)有且只有一个零点.

点评 本题考察了函数的零点问题,考查导数的应用以及函数的单调性问题,渗透了转化思想,数形结合思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知f(x)为定义在(0,+∞)上的单调递增函数,对任意x∈(0,+∞),都满足f[f(x)-log2x]=3,则函数y=f(x)-f′(x)-2(f′(x)为f(x)的导函数)的零点所在区间是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}{x^2}$-(3a+1)x+3alnx.
(Ⅰ)若曲线y=f(x)在点(4,f ( 4 ))处的切线的斜率小于0,求f(x)的单调区间;
(Ⅱ)对任意的a∈[1,3],x1,x2∈[1,3](x1≠x2),恒有$|f({x_1})-f({x_2})|<k|\frac{1}{x_1}-\frac{1}{x_2}|$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.$\int_1^2{({e^x}-\frac{2}{x})}dx$=e2-e-2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求证:CD⊥AM;
(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A、B、C的对边分别为a、b、c,且sin2A-sin2B=sin2C+$\sqrt{3}$sinBsinC.
(1)求角A;
(2)设a=$\sqrt{3}$,S为△ABC的面积,求S+3cosBcosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)的导函数为f′(x),对任意x∈R都有xf′(x)<f(x)成立,则(  )
A.3f(2)>2f(3)B.3f(2)=2f(3)
C.3f(2)<2f(3)D.3f(2)与2f(3)的大小不确定.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2=a2+$\sqrt{3}$bc,acosB=bcosA
(1)求角A,B,C的大小;
(2)若BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{|x+1|-2a,x≤0}\\{lo{g}_{3}x,x>0}\\{\;}\end{array}\right.$.
①当a=0时,若f(x)=0,则x=±1;
②若f(x)有三个不同零点,则实数a的取值范围为0<a≤$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案